Enhanced forest fire susceptibility mapping by integrating feature selection genetic algorithm and bagging-based support vector machine with artificial neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256529" target="_blank" >RIV/61989100:27240/24:10256529 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00477-024-02851-8" target="_blank" >https://link.springer.com/article/10.1007/s00477-024-02851-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00477-024-02851-8" target="_blank" >10.1007/s00477-024-02851-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced forest fire susceptibility mapping by integrating feature selection genetic algorithm and bagging-based support vector machine with artificial neural networks
Popis výsledku v původním jazyce
Forest fire is a natural disaster that threatens a large part of the world's forests. Considering the destructive effects of forest fires, the preparation of forest fire probability maps can be a very valuable step towards reducing such effects. This study proposes two novel wrapper feature selection-based ensemble models that combine the strengths of Support vector machine (SVM) and Artificial neural networks (ANN) with bagging (bootstrap aggregating) and Genetic Algorithm (GA) for forest fire susceptibility mapping in the Jerash and Ajloun provinces of Jordan. By integrating multiple learning algorithms through ensemble methods, we aim to increase predictive accuracy and enhance the robustness of our findings. GA was employed for feature selection utilizing data from 207 forest fire locations and fourteen predictor variables. 70% of the forest fire locations (145 locations) were used in the training phase, and the remaining 60% (62 locations) were employed to validate the models. The accuracy of the models was measured by using the area Under the Receiver Operating Characteristic (AUROC). The AUROC for single SVM, single ANN, GBSVM, and GBANN models was 69.3%, 66.9%, 70.9%, and 70.4% in the validation phase, respectively. The results showed that wrapper and bagging-based ensemble models did much better than single models. This shows that combining techniques can improve modeling performance for mapping the risk of forest fires. (C) The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Název v anglickém jazyce
Enhanced forest fire susceptibility mapping by integrating feature selection genetic algorithm and bagging-based support vector machine with artificial neural networks
Popis výsledku anglicky
Forest fire is a natural disaster that threatens a large part of the world's forests. Considering the destructive effects of forest fires, the preparation of forest fire probability maps can be a very valuable step towards reducing such effects. This study proposes two novel wrapper feature selection-based ensemble models that combine the strengths of Support vector machine (SVM) and Artificial neural networks (ANN) with bagging (bootstrap aggregating) and Genetic Algorithm (GA) for forest fire susceptibility mapping in the Jerash and Ajloun provinces of Jordan. By integrating multiple learning algorithms through ensemble methods, we aim to increase predictive accuracy and enhance the robustness of our findings. GA was employed for feature selection utilizing data from 207 forest fire locations and fourteen predictor variables. 70% of the forest fire locations (145 locations) were used in the training phase, and the remaining 60% (62 locations) were employed to validate the models. The accuracy of the models was measured by using the area Under the Receiver Operating Characteristic (AUROC). The AUROC for single SVM, single ANN, GBSVM, and GBANN models was 69.3%, 66.9%, 70.9%, and 70.4% in the validation phase, respectively. The results showed that wrapper and bagging-based ensemble models did much better than single models. This shows that combining techniques can improve modeling performance for mapping the risk of forest fires. (C) The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Stochastic Environmental Research and Risk Assessment
ISSN
1436-3240
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
38
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
5039-5058
Kód UT WoS článku
001353858900001
EID výsledku v databázi Scopus
2-s2.0-85208980291