Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhanced forest fire susceptibility mapping by integrating feature selection genetic algorithm and bagging-based support vector machine with artificial neural networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256529" target="_blank" >RIV/61989100:27240/24:10256529 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00477-024-02851-8" target="_blank" >https://link.springer.com/article/10.1007/s00477-024-02851-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00477-024-02851-8" target="_blank" >10.1007/s00477-024-02851-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhanced forest fire susceptibility mapping by integrating feature selection genetic algorithm and bagging-based support vector machine with artificial neural networks

  • Popis výsledku v původním jazyce

    Forest fire is a natural disaster that threatens a large part of the world&apos;s forests. Considering the destructive effects of forest fires, the preparation of forest fire probability maps can be a very valuable step towards reducing such effects. This study proposes two novel wrapper feature selection-based ensemble models that combine the strengths of Support vector machine (SVM) and Artificial neural networks (ANN) with bagging (bootstrap aggregating) and Genetic Algorithm (GA) for forest fire susceptibility mapping in the Jerash and Ajloun provinces of Jordan. By integrating multiple learning algorithms through ensemble methods, we aim to increase predictive accuracy and enhance the robustness of our findings. GA was employed for feature selection utilizing data from 207 forest fire locations and fourteen predictor variables. 70% of the forest fire locations (145 locations) were used in the training phase, and the remaining 60% (62 locations) were employed to validate the models. The accuracy of the models was measured by using the area Under the Receiver Operating Characteristic (AUROC). The AUROC for single SVM, single ANN, GBSVM, and GBANN models was 69.3%, 66.9%, 70.9%, and 70.4% in the validation phase, respectively. The results showed that wrapper and bagging-based ensemble models did much better than single models. This shows that combining techniques can improve modeling performance for mapping the risk of forest fires. (C) The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.

  • Název v anglickém jazyce

    Enhanced forest fire susceptibility mapping by integrating feature selection genetic algorithm and bagging-based support vector machine with artificial neural networks

  • Popis výsledku anglicky

    Forest fire is a natural disaster that threatens a large part of the world&apos;s forests. Considering the destructive effects of forest fires, the preparation of forest fire probability maps can be a very valuable step towards reducing such effects. This study proposes two novel wrapper feature selection-based ensemble models that combine the strengths of Support vector machine (SVM) and Artificial neural networks (ANN) with bagging (bootstrap aggregating) and Genetic Algorithm (GA) for forest fire susceptibility mapping in the Jerash and Ajloun provinces of Jordan. By integrating multiple learning algorithms through ensemble methods, we aim to increase predictive accuracy and enhance the robustness of our findings. GA was employed for feature selection utilizing data from 207 forest fire locations and fourteen predictor variables. 70% of the forest fire locations (145 locations) were used in the training phase, and the remaining 60% (62 locations) were employed to validate the models. The accuracy of the models was measured by using the area Under the Receiver Operating Characteristic (AUROC). The AUROC for single SVM, single ANN, GBSVM, and GBANN models was 69.3%, 66.9%, 70.9%, and 70.4% in the validation phase, respectively. The results showed that wrapper and bagging-based ensemble models did much better than single models. This shows that combining techniques can improve modeling performance for mapping the risk of forest fires. (C) The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Stochastic Environmental Research and Risk Assessment

  • ISSN

    1436-3240

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    38

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    5039-5058

  • Kód UT WoS článku

    001353858900001

  • EID výsledku v databázi Scopus

    2-s2.0-85208980291