O novém přeformulování Hadwigerovy hypotézy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F06%3A00005543" target="_blank" >RIV/00216208:11320/06:00005543 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a new reformulation of Hadwiger's conjecture
Popis výsledku v původním jazyce
Assuming that every proper minor closed class of graphs contains a maximum with respect to the homomorphism order, we prove that such a maximum must be homomorphically equivalent to a complete graph. This proves that Hadwiger's conjecture is equivalent to saying that every minor closed class of graphs contains a maximum with respect to homomorphism order. Let F be a finite set of 2-connected graphs, and let C be the class of graphs with no minor from F. We prove that if C has a maximum, then any maximumof C must be homomorphically equivalent to a complete graph. This is a special case of a conjecture of Nesetril and Ossona de Mendez.
Název v anglickém jazyce
On a new reformulation of Hadwiger's conjecture
Popis výsledku anglicky
Assuming that every proper minor closed class of graphs contains a maximum with respect to the homomorphism order, we prove that such a maximum must be homomorphically equivalent to a complete graph. This proves that Hadwiger's conjecture is equivalent to saying that every minor closed class of graphs contains a maximum with respect to homomorphism order. Let F be a finite set of 2-connected graphs, and let C be the class of graphs with no minor from F. We prove that if C has a maximum, then any maximumof C must be homomorphically equivalent to a complete graph. This is a special case of a conjecture of Nesetril and Ossona de Mendez.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Svazek periodika
306
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
4
Strana od-do
3136-3139
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—