EXISTENCE OF MODELING LIMITS FOR SEQUENCES OF SPARSE STRUCTURES
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408956" target="_blank" >RIV/00216208:11320/19:10408956 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z.gR8L6OzS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z.gR8L6OzS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/jsl.2018.32" target="_blank" >10.1017/jsl.2018.32</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EXISTENCE OF MODELING LIMITS FOR SEQUENCES OF SPARSE STRUCTURES
Popis výsledku v původním jazyce
A sequence of graphs is FO-convergent if the probability of satisfaction of every first-order formula converges. A graph modeling is a graph, whose domain is a standard probability space, with the property that every definable set is Borel. It was known that FO-convergent sequence of graphs do not always admit a modeling limit, but it was conjectured that FO-convergent sequences of sufficiently sparse graphs have a modeling limits. Precisely, two conjectures were proposed: 1. If a FO-convergent sequence of graphs is residual, that is if for every integer d the maximum relative size of a ball of radius d in the graphs of the sequence tends to zero, then the sequence has a modeling limit. 2. A monotone class of graphs C has the property that every FO-convergent sequence of graphs from C has a modeling limit if and only if C is nowhere dense, that is if and only if for each integer p there is N(p) such that no graph in C contains the pth subdivision of a complete graph on N(p) vertices as a subgraph. In this article we prove both conjectures. This solves some of the main problems in the area and among others provides an analytic characterization of the nowhere dense-somewhere dense dichotomy.
Název v anglickém jazyce
EXISTENCE OF MODELING LIMITS FOR SEQUENCES OF SPARSE STRUCTURES
Popis výsledku anglicky
A sequence of graphs is FO-convergent if the probability of satisfaction of every first-order formula converges. A graph modeling is a graph, whose domain is a standard probability space, with the property that every definable set is Borel. It was known that FO-convergent sequence of graphs do not always admit a modeling limit, but it was conjectured that FO-convergent sequences of sufficiently sparse graphs have a modeling limits. Precisely, two conjectures were proposed: 1. If a FO-convergent sequence of graphs is residual, that is if for every integer d the maximum relative size of a ball of radius d in the graphs of the sequence tends to zero, then the sequence has a modeling limit. 2. A monotone class of graphs C has the property that every FO-convergent sequence of graphs from C has a modeling limit if and only if C is nowhere dense, that is if and only if for each integer p there is N(p) such that no graph in C contains the pth subdivision of a complete graph on N(p) vertices as a subgraph. In this article we prove both conjectures. This solves some of the main problems in the area and among others provides an analytic characterization of the nowhere dense-somewhere dense dichotomy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Symbolic Logic
ISSN
0022-4812
e-ISSN
—
Svazek periodika
84
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
452-472
Kód UT WoS článku
000470903600002
EID výsledku v databázi Scopus
2-s2.0-85064599120