Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

EXISTENCE OF MODELING LIMITS FOR SEQUENCES OF SPARSE STRUCTURES

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408956" target="_blank" >RIV/00216208:11320/19:10408956 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z.gR8L6OzS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z.gR8L6OzS</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/jsl.2018.32" target="_blank" >10.1017/jsl.2018.32</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    EXISTENCE OF MODELING LIMITS FOR SEQUENCES OF SPARSE STRUCTURES

  • Popis výsledku v původním jazyce

    A sequence of graphs is FO-convergent if the probability of satisfaction of every first-order formula converges. A graph modeling is a graph, whose domain is a standard probability space, with the property that every definable set is Borel. It was known that FO-convergent sequence of graphs do not always admit a modeling limit, but it was conjectured that FO-convergent sequences of sufficiently sparse graphs have a modeling limits. Precisely, two conjectures were proposed: 1. If a FO-convergent sequence of graphs is residual, that is if for every integer d the maximum relative size of a ball of radius d in the graphs of the sequence tends to zero, then the sequence has a modeling limit. 2. A monotone class of graphs C has the property that every FO-convergent sequence of graphs from C has a modeling limit if and only if C is nowhere dense, that is if and only if for each integer p there is N(p) such that no graph in C contains the pth subdivision of a complete graph on N(p) vertices as a subgraph. In this article we prove both conjectures. This solves some of the main problems in the area and among others provides an analytic characterization of the nowhere dense-somewhere dense dichotomy.

  • Název v anglickém jazyce

    EXISTENCE OF MODELING LIMITS FOR SEQUENCES OF SPARSE STRUCTURES

  • Popis výsledku anglicky

    A sequence of graphs is FO-convergent if the probability of satisfaction of every first-order formula converges. A graph modeling is a graph, whose domain is a standard probability space, with the property that every definable set is Borel. It was known that FO-convergent sequence of graphs do not always admit a modeling limit, but it was conjectured that FO-convergent sequences of sufficiently sparse graphs have a modeling limits. Precisely, two conjectures were proposed: 1. If a FO-convergent sequence of graphs is residual, that is if for every integer d the maximum relative size of a ball of radius d in the graphs of the sequence tends to zero, then the sequence has a modeling limit. 2. A monotone class of graphs C has the property that every FO-convergent sequence of graphs from C has a modeling limit if and only if C is nowhere dense, that is if and only if for each integer p there is N(p) such that no graph in C contains the pth subdivision of a complete graph on N(p) vertices as a subgraph. In this article we prove both conjectures. This solves some of the main problems in the area and among others provides an analytic characterization of the nowhere dense-somewhere dense dichotomy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Symbolic Logic

  • ISSN

    0022-4812

  • e-ISSN

  • Svazek periodika

    84

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    452-472

  • Kód UT WoS článku

    000470903600002

  • EID výsledku v databázi Scopus

    2-s2.0-85064599120