Bounds on real eigenvalues and singular values of interval matrices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10028801" target="_blank" >RIV/00216208:11320/10:10028801 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bounds on real eigenvalues and singular values of interval matrices
Popis výsledku v původním jazyce
We study bounds on real eigenvalues of interval matrices, and our aim is to develop fast computable formulae that produce as-sharp-as-possible bounds. We consider two cases: general and symmetric interval matrices. We focus on the latter case, since on the one hand such interval matrices have many applications in mechanics and engineering, and on the other hand many results from classical matrix analysis could be applied to them. We also provide bounds for the singular values of (generally nonsquare) interval matrices. Finally, we illustrate and compare the various approaches by a series of examples.
Název v anglickém jazyce
Bounds on real eigenvalues and singular values of interval matrices
Popis výsledku anglicky
We study bounds on real eigenvalues of interval matrices, and our aim is to develop fast computable formulae that produce as-sharp-as-possible bounds. We consider two cases: general and symmetric interval matrices. We focus on the latter case, since on the one hand such interval matrices have many applications in mechanics and engineering, and on the other hand many results from classical matrix analysis could be applied to them. We also provide bounds for the singular values of (generally nonsquare) interval matrices. Finally, we illustrate and compare the various approaches by a series of examples.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Matrix Analysis and Applications
ISSN
0895-4798
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000279347600029
EID výsledku v databázi Scopus
—