Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Distance k-sectors exist

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10038285" target="_blank" >RIV/00216208:11320/10:10038285 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Distance k-sectors exist

  • Popis výsledku v původním jazyce

    The bisector of two nonempty sets P and Q in a metric space is the set of all points with equal distance to P and to Q. A distance k-sector of P and Q, where k ? 2 is an integer, is a (k-1)-tuple (C1, C2, ..., Ck-1) such that Ci is the bisector of Ci-1 and Ci+1 for every i= 1, 2, ..., k-1, where C0 = P and Ck = Q. This notion, for the case where P and Q are points in Euclidean plane, was introduced by Asano, Matousek, and Tokuyama. They established the existence and uniqueness of the distance trisectorin this special case. We prove the existence of a distance k-sector for all k and for every two disjoint, nonempty, closed sets P and Q in Euclidean spaces of any (finite) dimension, or more generally, in proper geodesic spaces (uniqueness remains open).The core of the proof is a new notion of k-gradation for P and Q, whose existence (even in an arbitrary metric space) is proved using the Knaster-Tarski fixed point theorem, by a method introduced by Reem and Reich for a slightly differe

  • Název v anglickém jazyce

    Distance k-sectors exist

  • Popis výsledku anglicky

    The bisector of two nonempty sets P and Q in a metric space is the set of all points with equal distance to P and to Q. A distance k-sector of P and Q, where k ? 2 is an integer, is a (k-1)-tuple (C1, C2, ..., Ck-1) such that Ci is the bisector of Ci-1 and Ci+1 for every i= 1, 2, ..., k-1, where C0 = P and Ck = Q. This notion, for the case where P and Q are points in Euclidean plane, was introduced by Asano, Matousek, and Tokuyama. They established the existence and uniqueness of the distance trisectorin this special case. We prove the existence of a distance k-sector for all k and for every two disjoint, nonempty, closed sets P and Q in Euclidean spaces of any (finite) dimension, or more generally, in proper geodesic spaces (uniqueness remains open).The core of the proof is a new notion of k-gradation for P and Q, whose existence (even in an arbitrary metric space) is proved using the Knaster-Tarski fixed point theorem, by a method introduced by Reem and Reich for a slightly differe

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational Geometry: Theory and Applications

  • ISSN

    0925-7721

  • e-ISSN

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    000281436600001

  • EID výsledku v databázi Scopus