Induced Ramsey-type results and binary predicates for point sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10363798" target="_blank" >RIV/00216208:11320/17:10363798 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.endm.2017.06.023" target="_blank" >http://dx.doi.org/10.1016/j.endm.2017.06.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2017.06.023" target="_blank" >10.1016/j.endm.2017.06.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Induced Ramsey-type results and binary predicates for point sets
Popis výsledku v původním jazyce
Let A and B be two finite sets of points in the plane in general position (neither of these sets contains three collinear points). We say that A lies deep below B if every point from A lies below every line determined by two points from B and every point from B lies above every line determined by two points from A. A point set P is decomposable if either |P|=1 or there is a partition P1 UNION P2 of P into nonempty and decomposable sets such that P1 is to the left of P2 and P1 is deep below P2. Extending a result of Nešetřil and Valtr, we show that for every decomposable point set Q and a positive integer k there is a finite set P of points in the plane in general position that satisfies the following Ramsey-type statement. For any partition C1 UNIONMIDLINE HORIZONTAL ELLIPSISUNION Ck of the pairs of points from P (that is, of the edges of the complete graph on P), there is a subset Q' of P with the same triple-orientations as Q such that all pairs of points from Q' are in the same part Ci. We then use this result to show that for every k there is a point set P such that no function Γ that maps ordered pairs of distinct points from P to a set of size k can satisfy the following property: if Γ attains the same values on two ordered triples of points from P, then these triples have the same orientation. Intuitively, this implies that there cannot be such a function that is defined locally and determines the orientation of point triples.
Název v anglickém jazyce
Induced Ramsey-type results and binary predicates for point sets
Popis výsledku anglicky
Let A and B be two finite sets of points in the plane in general position (neither of these sets contains three collinear points). We say that A lies deep below B if every point from A lies below every line determined by two points from B and every point from B lies above every line determined by two points from A. A point set P is decomposable if either |P|=1 or there is a partition P1 UNION P2 of P into nonempty and decomposable sets such that P1 is to the left of P2 and P1 is deep below P2. Extending a result of Nešetřil and Valtr, we show that for every decomposable point set Q and a positive integer k there is a finite set P of points in the plane in general position that satisfies the following Ramsey-type statement. For any partition C1 UNIONMIDLINE HORIZONTAL ELLIPSISUNION Ck of the pairs of points from P (that is, of the edges of the complete graph on P), there is a subset Q' of P with the same triple-orientations as Q such that all pairs of points from Q' are in the same part Ci. We then use this result to show that for every k there is a point set P such that no function Γ that maps ordered pairs of distinct points from P to a set of size k can satisfy the following property: if Γ attains the same values on two ordered triples of points from P, then these triples have the same orientation. Intuitively, this implies that there cannot be such a function that is defined locally and determines the orientation of point triples.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
61
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
77-83
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85026765695