Induced Ramsey-Type Results and Binary Predicates for Point Sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10363797" target="_blank" >RIV/00216208:11320/17:10363797 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Induced Ramsey-Type Results and Binary Predicates for Point Sets
Popis výsledku v původním jazyce
Let k and p be positive integers and let Q be a finite point set in general position in the plane. We say that Q is (k,p)-Ramsey if there is a finite point set P such that for every k-coloring c of (P choose p) there is a subset Q' of P such that Q' and Q have the same order type and (Q' choose p) is monochromatic in c. Nešetřil and Valtr proved that for every k ELEMENT OF N, all point sets are (k,1)-Ramsey. They also proved that for every k GREATER-THAN OR EQUAL TO 2 and p GREATER-THAN OR EQUAL TO 2, there are point sets that are not (k,p)-Ramsey. As our main result, we introduce a new family of (k,2)-Ramsey point sets, extending a result of Nešetřil and Valtr. We then use this new result to show that for every k there is a point set P such that no function Γ that maps ordered pairs of distinct points from P to a set of size k can satisfy the following "local consistency" property: if Γ attains the same values on two ordered triples of points from P, then these triples have the same orientation. Intuitively, this implies that there cannot be such a function that is defined locally and determines the orientation of point triples.
Název v anglickém jazyce
Induced Ramsey-Type Results and Binary Predicates for Point Sets
Popis výsledku anglicky
Let k and p be positive integers and let Q be a finite point set in general position in the plane. We say that Q is (k,p)-Ramsey if there is a finite point set P such that for every k-coloring c of (P choose p) there is a subset Q' of P such that Q' and Q have the same order type and (Q' choose p) is monochromatic in c. Nešetřil and Valtr proved that for every k ELEMENT OF N, all point sets are (k,1)-Ramsey. They also proved that for every k GREATER-THAN OR EQUAL TO 2 and p GREATER-THAN OR EQUAL TO 2, there are point sets that are not (k,p)-Ramsey. As our main result, we introduce a new family of (k,2)-Ramsey point sets, extending a result of Nešetřil and Valtr. We then use this new result to show that for every k there is a point set P such that no function Γ that maps ordered pairs of distinct points from P to a set of size k can satisfy the following "local consistency" property: if Γ attains the same values on two ordered triples of points from P, then these triples have the same orientation. Intuitively, this implies that there cannot be such a function that is defined locally and determines the orientation of point triples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
24
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
1-22
Kód UT WoS článku
000414866500003
EID výsledku v databázi Scopus
—