Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Untangling Polygons and Graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10048543" target="_blank" >RIV/00216208:11320/10:10048543 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Untangling Polygons and Graphs

  • Popis výsledku v původním jazyce

    Untangling is a process in which some vertices in a drawing of a planar graph are moved to obtain a straight-line plane drawing. The aim is to move as few vertices as possible. We present an algorithm that untangles the cycle graph while keeping Omega(n^{2/3}) vertices fixed. For any connected graph G, we also present an upper bound on the number of fixed vertices in the worst case. The bound is a function of the number of vertices, maximum degree, and diameter of G.

  • Název v anglickém jazyce

    Untangling Polygons and Graphs

  • Popis výsledku anglicky

    Untangling is a process in which some vertices in a drawing of a planar graph are moved to obtain a straight-line plane drawing. The aim is to move as few vertices as possible. We present an algorithm that untangles the cycle graph while keeping Omega(n^{2/3}) vertices fixed. For any connected graph G, we also present an upper bound on the number of fixed vertices in the worst case. The bound is a function of the number of vertices, maximum degree, and diameter of G.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete and Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000273589700015

  • EID výsledku v databázi Scopus