Bounding and Computing Obstacle Numbers of Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453250" target="_blank" >RIV/00216208:11320/22:10453250 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ESA.2022.11" target="_blank" >https://doi.org/10.4230/LIPIcs.ESA.2022.11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ESA.2022.11" target="_blank" >10.4230/LIPIcs.ESA.2022.11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bounding and Computing Obstacle Numbers of Graphs
Popis výsledku v původním jazyce
An obstacle representation of a graph~$G$ consists of a set of pairwise disjoint simply-connected closed regions % in the plane and a one-to-one mapping of the vertices of~$G$ to points such that two vertices are adjacent in $G$ if and only if the line segment connecting the two corresponding points does not intersect any obstacle. The obstacle number of a graph is the smallest number of obstacles in an obstacle representation of the graph in the plane such that all obstacles are simple polygons. It is known that the obstacle number of each $n$-vertex graph is $O(n log n)$ [Balko, Cibulka, and Valtr, 2018] and that there are $n$-vertex graphs whose obstacle number is $Omega(n/(loglog n)^2)$ [Dujmovi'c and Morin, 2015]. We improve this lower bound to $Omega(n/loglog n)$ for simple polygons and to $Omega(n)$ for convex polygons. To obtain these stronger bounds, we improve known estimates on the number of $n$-vertex graphs with bounded obstacle number, solving a conjecture by Dujmovi'c and Morin. We also show that if the drawing of some $n$-vertex graph is given as part of the input, then for some drawings $Omega(n^2)$ obstacles are required to turn them into an obstacle representation of the graph. Our bounds are asymptotically tight in several instances.We complement these combinatorial bounds by two complexity results. First, we show that computing the obstacle number of a graph~$G$ is fixed-parameter tractable in the vertex cover number of~$G$. Second, we show that, given a graph~$G$ and a simple polygon~$P$, it is NP-hard to decide whether~$G$ admits an obstacle representation using~$P$ as the only obstacle.
Název v anglickém jazyce
Bounding and Computing Obstacle Numbers of Graphs
Popis výsledku anglicky
An obstacle representation of a graph~$G$ consists of a set of pairwise disjoint simply-connected closed regions % in the plane and a one-to-one mapping of the vertices of~$G$ to points such that two vertices are adjacent in $G$ if and only if the line segment connecting the two corresponding points does not intersect any obstacle. The obstacle number of a graph is the smallest number of obstacles in an obstacle representation of the graph in the plane such that all obstacles are simple polygons. It is known that the obstacle number of each $n$-vertex graph is $O(n log n)$ [Balko, Cibulka, and Valtr, 2018] and that there are $n$-vertex graphs whose obstacle number is $Omega(n/(loglog n)^2)$ [Dujmovi'c and Morin, 2015]. We improve this lower bound to $Omega(n/loglog n)$ for simple polygons and to $Omega(n)$ for convex polygons. To obtain these stronger bounds, we improve known estimates on the number of $n$-vertex graphs with bounded obstacle number, solving a conjecture by Dujmovi'c and Morin. We also show that if the drawing of some $n$-vertex graph is given as part of the input, then for some drawings $Omega(n^2)$ obstacles are required to turn them into an obstacle representation of the graph. Our bounds are asymptotically tight in several instances.We complement these combinatorial bounds by two complexity results. First, we show that computing the obstacle number of a graph~$G$ is fixed-parameter tractable in the vertex cover number of~$G$. Second, we show that, given a graph~$G$ and a simple polygon~$P$, it is NP-hard to decide whether~$G$ admits an obstacle representation using~$P$ as the only obstacle.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-32817S" target="_blank" >GA21-32817S: Algoritmické, strukturální a složitostní aspekty geometrických konfigurací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-247-1
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
13
Strana od-do
—
Název nakladatele
Schloss Dagstuhl
Místo vydání
Německo
Místo konání akce
Postupim
Datum konání akce
5. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—