Drawing Graphs Using a Small Number of Obstacles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10366667" target="_blank" >RIV/00216208:11320/18:10366667 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00454-017-9919-2" target="_blank" >https://link.springer.com/article/10.1007%2Fs00454-017-9919-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-017-9919-2" target="_blank" >10.1007/s00454-017-9919-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Drawing Graphs Using a Small Number of Obstacles
Popis výsledku v původním jazyce
An obstacle representation of a graph G is a set of points in the plane representing the vertices of G, together with a set of polygonal obstacles such that two vertices of G are connected by an edge in G if and only if the line segment between the corresponding points avoids all the obstacles. The obstacle number obs(G) of G is the minimum number of obstacles in an obstacle representation of G. We provide the first non-trivial general upper bound on the obstacle number of graphs by showing that every n-vertex graph G satisfies obs(G)LESS-THAN OR EQUAL TOnLEFT CEILINGlognRIGHT CEILINGMINUS SIGN n+1. This refutes a conjecture of Mukkamala, Pach, and Pálvölgyi. For n-vertex graphs with bounded chromatic number, we improve this bound to O(n). Both bounds apply even when the obstacles are required to be convex. We also prove a lower bound 2Ω(hn) on the number of n-vertex graphs with obstacle number at most h for h<n and a lower bound Ω(n^(4/3)M^(2/3)) for the complexity of a collection of MGREATER-THAN OR EQUAL TOΩ(nlog^(3/2)(n)) faces in an arrangement of line segments with n endpoints. The latter bound is tight up to a multiplicative constant.
Název v anglickém jazyce
Drawing Graphs Using a Small Number of Obstacles
Popis výsledku anglicky
An obstacle representation of a graph G is a set of points in the plane representing the vertices of G, together with a set of polygonal obstacles such that two vertices of G are connected by an edge in G if and only if the line segment between the corresponding points avoids all the obstacles. The obstacle number obs(G) of G is the minimum number of obstacles in an obstacle representation of G. We provide the first non-trivial general upper bound on the obstacle number of graphs by showing that every n-vertex graph G satisfies obs(G)LESS-THAN OR EQUAL TOnLEFT CEILINGlognRIGHT CEILINGMINUS SIGN n+1. This refutes a conjecture of Mukkamala, Pach, and Pálvölgyi. For n-vertex graphs with bounded chromatic number, we improve this bound to O(n). Both bounds apply even when the obstacles are required to be convex. We also prove a lower bound 2Ω(hn) on the number of n-vertex graphs with obstacle number at most h for h<n and a lower bound Ω(n^(4/3)M^(2/3)) for the complexity of a collection of MGREATER-THAN OR EQUAL TOΩ(nlog^(3/2)(n)) faces in an arrangement of line segments with n endpoints. The latter bound is tight up to a multiplicative constant.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
59
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
143-164
Kód UT WoS článku
000418291200006
EID výsledku v databázi Scopus
2-s2.0-85027833996