On the Connectivity of Visibility Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127501" target="_blank" >RIV/00216208:11320/12:10127501 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00454-012-9446-0" target="_blank" >http://dx.doi.org/10.1007/s00454-012-9446-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-012-9446-0" target="_blank" >10.1007/s00454-012-9446-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Connectivity of Visibility Graphs
Popis výsledku v původním jazyce
The visibility graph of a finite set of points in the plane has the points as vertices and an edge between two vertices if the line segment between them contains no other points. This paper establishes bounds on the edge- and vertex-connectivity of visibility graphs. Unless all its vertices are collinear, a visibility graph has diameter at most 2, and so it follows by a result of Plesnik (Acta Fac. Rerum Nat. Univ. Comen. Math. 30:71-93, 1975) that its edge-connectivity equals its minimum degree. We strengthen the result of Plesnik by showing that for any two vertices v and w in a graph of diameter 2, if deg(v) is smaller or equal deg(w) then there exist deg(v) edge-disjoint vw-paths of length at most 4. For vertex-connectivity, we prove that every visibility graph with n vertices and at most l collinear vertices has connectivity at least n-1/l-1, which is tight. We also prove the qualitatively stronger result that the vertex-connectivity is at least half the minimum degree. Finally, i
Název v anglickém jazyce
On the Connectivity of Visibility Graphs
Popis výsledku anglicky
The visibility graph of a finite set of points in the plane has the points as vertices and an edge between two vertices if the line segment between them contains no other points. This paper establishes bounds on the edge- and vertex-connectivity of visibility graphs. Unless all its vertices are collinear, a visibility graph has diameter at most 2, and so it follows by a result of Plesnik (Acta Fac. Rerum Nat. Univ. Comen. Math. 30:71-93, 1975) that its edge-connectivity equals its minimum degree. We strengthen the result of Plesnik by showing that for any two vertices v and w in a graph of diameter 2, if deg(v) is smaller or equal deg(w) then there exist deg(v) edge-disjoint vw-paths of length at most 4. For vertex-connectivity, we prove that every visibility graph with n vertices and at most l collinear vertices has connectivity at least n-1/l-1, which is tight. We also prove the qualitatively stronger result that the vertex-connectivity is at least half the minimum degree. Finally, i
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
669-681
Kód UT WoS článku
000307507800007
EID výsledku v databázi Scopus
—