Pursuing a fast robber on a graph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10057000" target="_blank" >RIV/00216208:11320/10:10057000 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pursuing a fast robber on a graph
Popis výsledku v původním jazyce
The Cops and Robbers game as originally defined independently by Quilliot and by Nowakowski and Winkler in the 1980s has been much studied, but very few results pertain to the algorithmic and complexity aspects of it. In this paper we prove that computing the minimum number of cops that are guaranteed to catch a robber on a given graph is NP-hard and that the parameterized version of the problem is W[2]-hard; the proof extends to the case where the robber moves s time faster than the cops. We show thaton split graphs, the problem is polynomially solvable if s=1 but is NP-hard if s=2. We further prove that on graphs of bounded cliquewidth the problem is polynomially solvable for s?2. Finally, we show that for planar graphs the minimum number of cops isunbounded if the robber is faster than the cops.
Název v anglickém jazyce
Pursuing a fast robber on a graph
Popis výsledku anglicky
The Cops and Robbers game as originally defined independently by Quilliot and by Nowakowski and Winkler in the 1980s has been much studied, but very few results pertain to the algorithmic and complexity aspects of it. In this paper we prove that computing the minimum number of cops that are guaranteed to catch a robber on a given graph is NP-hard and that the parameterized version of the problem is W[2]-hard; the proof extends to the case where the robber moves s time faster than the cops. We show thaton split graphs, the problem is polynomially solvable if s=1 but is NP-hard if s=2. We further prove that on graphs of bounded cliquewidth the problem is polynomially solvable for s?2. Finally, we show that for planar graphs the minimum number of cops isunbounded if the robber is faster than the cops.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
411
Číslo periodika v rámci svazku
7-9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000274886700020
EID výsledku v databázi Scopus
—