Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pursuing a fast robber on a graph

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10057000" target="_blank" >RIV/00216208:11320/10:10057000 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pursuing a fast robber on a graph

  • Popis výsledku v původním jazyce

    The Cops and Robbers game as originally defined independently by Quilliot and by Nowakowski and Winkler in the 1980s has been much studied, but very few results pertain to the algorithmic and complexity aspects of it. In this paper we prove that computing the minimum number of cops that are guaranteed to catch a robber on a given graph is NP-hard and that the parameterized version of the problem is W[2]-hard; the proof extends to the case where the robber moves s time faster than the cops. We show thaton split graphs, the problem is polynomially solvable if s=1 but is NP-hard if s=2. We further prove that on graphs of bounded cliquewidth the problem is polynomially solvable for s?2. Finally, we show that for planar graphs the minimum number of cops isunbounded if the robber is faster than the cops.

  • Název v anglickém jazyce

    Pursuing a fast robber on a graph

  • Popis výsledku anglicky

    The Cops and Robbers game as originally defined independently by Quilliot and by Nowakowski and Winkler in the 1980s has been much studied, but very few results pertain to the algorithmic and complexity aspects of it. In this paper we prove that computing the minimum number of cops that are guaranteed to catch a robber on a given graph is NP-hard and that the parameterized version of the problem is W[2]-hard; the proof extends to the case where the robber moves s time faster than the cops. We show thaton split graphs, the problem is polynomially solvable if s=1 but is NP-hard if s=2. We further prove that on graphs of bounded cliquewidth the problem is polynomially solvable for s?2. Finally, we show that for planar graphs the minimum number of cops isunbounded if the robber is faster than the cops.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BD - Teorie informace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Svazek periodika

    411

  • Číslo periodika v rámci svazku

    7-9

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    000274886700020

  • EID výsledku v databázi Scopus