The guarding game is E-complete
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10286913" target="_blank" >RIV/00216208:11320/14:10286913 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/14:00214334
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tcs.2013.11.034" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2013.11.034</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2013.11.034" target="_blank" >10.1016/j.tcs.2013.11.034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The guarding game is E-complete
Popis výsledku v původním jazyce
The guarding game is a game in which several cops try to guard a region in a (directed or undirected) graph against Robber. Robber and the cops are placed on the vertices of the graph; they take turns in moving to adjacent vertices (or staying), cops inside the guarded region, Robber on the remaining vertices (the robber-region). The goal of Robber is to enter the guarded region at a vertex with no cop on it. The problem is to determine whether for a given graph and given number of cops the cops are able to prevent Robber from entering the guarded region. Fomin et al. (2011) [7] proved that the problem is NP-complete when the robber-region is restricted to a tree. Further they prove that is it PSPACE-complete when the robber-region is restricted to a directed acyclic graph, and they ask about the problem complexity for arbitrary graphs. In this paper we prove that the problem is E-complete for arbitrary directed graphs.
Název v anglickém jazyce
The guarding game is E-complete
Popis výsledku anglicky
The guarding game is a game in which several cops try to guard a region in a (directed or undirected) graph against Robber. Robber and the cops are placed on the vertices of the graph; they take turns in moving to adjacent vertices (or staying), cops inside the guarded region, Robber on the remaining vertices (the robber-region). The goal of Robber is to enter the guarded region at a vertex with no cop on it. The problem is to determine whether for a given graph and given number of cops the cops are able to prevent Robber from entering the guarded region. Fomin et al. (2011) [7] proved that the problem is NP-complete when the robber-region is restricted to a tree. Further they prove that is it PSPACE-complete when the robber-region is restricted to a directed acyclic graph, and they ask about the problem complexity for arbitrary graphs. In this paper we prove that the problem is E-complete for arbitrary directed graphs.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
521
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
92-106
Kód UT WoS článku
000331433100008
EID výsledku v databázi Scopus
—