Maximum Entropy Translation Model in Dependency-Based MT Framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10078023" target="_blank" >RIV/00216208:11320/10:10078023 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Maximum Entropy Translation Model in Dependency-Based MT Framework
Popis výsledku v původním jazyce
Maximum Entropy Principle has been used successfully in various NLP tasks. In this paper we propose a forward translation model consisting of a set of maximum entropy classifiers: a separate classifier is trained for each (sufficiently frequent) source-side lemma. In this way the estimates of translation probabilities can be sensitive to a large number of features derived from the source sentence (including non-local features, features making use of sentence syntactic structure, etc.). When integrated into English-to- Czech dependency-based translation scenario implemented in the TectoMT framework, the new translation model significantly outperforms the baseline model (MLE) in terms of BLEU. The performance is further boosted in a configuration inspired by Hidden Tree Markov Models which combines the maximum entropy translation model with the target-language dependency tree model.
Název v anglickém jazyce
Maximum Entropy Translation Model in Dependency-Based MT Framework
Popis výsledku anglicky
Maximum Entropy Principle has been used successfully in various NLP tasks. In this paper we propose a forward translation model consisting of a set of maximum entropy classifiers: a separate classifier is trained for each (sufficiently frequent) source-side lemma. In this way the estimates of translation probabilities can be sensitive to a large number of features derived from the source sentence (including non-local features, features making use of sentence syntactic structure, etc.). When integrated into English-to- Czech dependency-based translation scenario implemented in the TectoMT framework, the new translation model significantly outperforms the baseline model (MLE) in terms of BLEU. The performance is further boosted in a configuration inspired by Hidden Tree Markov Models which combines the maximum entropy translation model with the target-language dependency tree model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AI - Jazykověda
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR
ISBN
978-1-932432-71-8
ISSN
—
e-ISSN
—
Počet stran výsledku
1
Strana od-do
—
Název nakladatele
Association for Computational Linguistics
Místo vydání
Uppsala, Sweden
Místo konání akce
Uppsala, Sweden
Datum konání akce
15. 7. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—