Entropy-based syntactic tree analysis for text classification: a novel approach to distinguishing between original and translated Chinese texts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AP9YL4LRB" target="_blank" >RIV/00216208:11320/25:P9YL4LRB - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201389489&doi=10.1093%2fllc%2ffqae030&partnerID=40&md5=903d2c494ee2da621b0b7bbc69e53087" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201389489&doi=10.1093%2fllc%2ffqae030&partnerID=40&md5=903d2c494ee2da621b0b7bbc69e53087</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/llc/fqae030" target="_blank" >10.1093/llc/fqae030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Entropy-based syntactic tree analysis for text classification: a novel approach to distinguishing between original and translated Chinese texts
Popis výsledku v původním jazyce
This research focuses on classifying translated and non-translated Chinese texts by analyzing syntactic rule features, using an integrated approach of machine learning and entropy analysis. The methodology employs information entropy to gauge the complexity of syntactic rules in both text types. The methodology is based on the concept of information entropy, which serves as a quantitative measure for the complexity inherent in syntactic rules as manifested from tree-based annotations. The goal of the study is to explore whether translated Chinese texts demonstrate syntactic characteristics that are significantly different from those of non-translated texts, thereby permitting a reliable classification between the two. To do this, the research calculates information entropy values for syntactic rules in two comparable corpora, one of translated and the other of non-translated Chinese texts. Then, various machine learning models are applied to these entropy metrics to identify any significant differences between the two groups. The results show significant differences in the syntactic structures. Translated texts have a higher degree of entropy, indicating more complex syntactic constructs compared to non-translated texts. These findings contribute to our understanding of the effect of translation on language syntax, with implications for text classification and translation studies. © The Author(s) 2024.
Název v anglickém jazyce
Entropy-based syntactic tree analysis for text classification: a novel approach to distinguishing between original and translated Chinese texts
Popis výsledku anglicky
This research focuses on classifying translated and non-translated Chinese texts by analyzing syntactic rule features, using an integrated approach of machine learning and entropy analysis. The methodology employs information entropy to gauge the complexity of syntactic rules in both text types. The methodology is based on the concept of information entropy, which serves as a quantitative measure for the complexity inherent in syntactic rules as manifested from tree-based annotations. The goal of the study is to explore whether translated Chinese texts demonstrate syntactic characteristics that are significantly different from those of non-translated texts, thereby permitting a reliable classification between the two. To do this, the research calculates information entropy values for syntactic rules in two comparable corpora, one of translated and the other of non-translated Chinese texts. Then, various machine learning models are applied to these entropy metrics to identify any significant differences between the two groups. The results show significant differences in the syntactic structures. Translated texts have a higher degree of entropy, indicating more complex syntactic constructs compared to non-translated texts. These findings contribute to our understanding of the effect of translation on language syntax, with implications for text classification and translation studies. © The Author(s) 2024.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Digital Scholarship in the Humanities
ISSN
2055-7671
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
984-1000
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85201389489