Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Entropy-based syntactic tree analysis for text classification: a novel approach to distinguishing between original and translated Chinese texts

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AP9YL4LRB" target="_blank" >RIV/00216208:11320/25:P9YL4LRB - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201389489&doi=10.1093%2fllc%2ffqae030&partnerID=40&md5=903d2c494ee2da621b0b7bbc69e53087" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201389489&doi=10.1093%2fllc%2ffqae030&partnerID=40&md5=903d2c494ee2da621b0b7bbc69e53087</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/llc/fqae030" target="_blank" >10.1093/llc/fqae030</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Entropy-based syntactic tree analysis for text classification: a novel approach to distinguishing between original and translated Chinese texts

  • Popis výsledku v původním jazyce

    This research focuses on classifying translated and non-translated Chinese texts by analyzing syntactic rule features, using an integrated approach of machine learning and entropy analysis. The methodology employs information entropy to gauge the complexity of syntactic rules in both text types. The methodology is based on the concept of information entropy, which serves as a quantitative measure for the complexity inherent in syntactic rules as manifested from tree-based annotations. The goal of the study is to explore whether translated Chinese texts demonstrate syntactic characteristics that are significantly different from those of non-translated texts, thereby permitting a reliable classification between the two. To do this, the research calculates information entropy values for syntactic rules in two comparable corpora, one of translated and the other of non-translated Chinese texts. Then, various machine learning models are applied to these entropy metrics to identify any significant differences between the two groups. The results show significant differences in the syntactic structures. Translated texts have a higher degree of entropy, indicating more complex syntactic constructs compared to non-translated texts. These findings contribute to our understanding of the effect of translation on language syntax, with implications for text classification and translation studies. © The Author(s) 2024.

  • Název v anglickém jazyce

    Entropy-based syntactic tree analysis for text classification: a novel approach to distinguishing between original and translated Chinese texts

  • Popis výsledku anglicky

    This research focuses on classifying translated and non-translated Chinese texts by analyzing syntactic rule features, using an integrated approach of machine learning and entropy analysis. The methodology employs information entropy to gauge the complexity of syntactic rules in both text types. The methodology is based on the concept of information entropy, which serves as a quantitative measure for the complexity inherent in syntactic rules as manifested from tree-based annotations. The goal of the study is to explore whether translated Chinese texts demonstrate syntactic characteristics that are significantly different from those of non-translated texts, thereby permitting a reliable classification between the two. To do this, the research calculates information entropy values for syntactic rules in two comparable corpora, one of translated and the other of non-translated Chinese texts. Then, various machine learning models are applied to these entropy metrics to identify any significant differences between the two groups. The results show significant differences in the syntactic structures. Translated texts have a higher degree of entropy, indicating more complex syntactic constructs compared to non-translated texts. These findings contribute to our understanding of the effect of translation on language syntax, with implications for text classification and translation studies. © The Author(s) 2024.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Digital Scholarship in the Humanities

  • ISSN

    2055-7671

  • e-ISSN

  • Svazek periodika

    39

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    984-1000

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85201389489