Towards AI-supported Health Communication in Plain Language: Evaluating Intralingual Machine Translation of Medical Texts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A5JK29LZF" target="_blank" >RIV/00216208:11320/25:5JK29LZF - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195213804&partnerID=40&md5=0c7f3da21b2d0d4999d0981655a042b8" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195213804&partnerID=40&md5=0c7f3da21b2d0d4999d0981655a042b8</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards AI-supported Health Communication in Plain Language: Evaluating Intralingual Machine Translation of Medical Texts
Popis výsledku v původním jazyce
In this paper, we describe results of a study on evaluation of intralingual machine translation. The study focuses on machine translations of medical texts into Plain German. The automatically simplified texts were compared with manually simplified texts (i.e., simplified by human experts) as well as with the underlying, unsimplified source texts. We analyse the quality of the translations based on different criteria, such as correctness, readability, and syntactic complexity. The study revealed that the machine translations were easier to read than the source texts, but contained a higher number of complex syntactic relations than the human translations. Furthermore, we identified various types of mistakes. These included not only grammatical mistakes but also content-related mistakes that resulted, for example, from mistranslations of grammatical structures, ambiguous words or numbers, omissions of relevant prefixes or negation, and incorrect explanations of technical terms. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Název v anglickém jazyce
Towards AI-supported Health Communication in Plain Language: Evaluating Intralingual Machine Translation of Medical Texts
Popis výsledku anglicky
In this paper, we describe results of a study on evaluation of intralingual machine translation. The study focuses on machine translations of medical texts into Plain German. The automatically simplified texts were compared with manually simplified texts (i.e., simplified by human experts) as well as with the underlying, unsimplified source texts. We analyse the quality of the translations based on different criteria, such as correctness, readability, and syntactic complexity. The study revealed that the machine translations were easier to read than the source texts, but contained a higher number of complex syntactic relations than the human translations. Furthermore, we identified various types of mistakes. These included not only grammatical mistakes but also content-related mistakes that resulted, for example, from mistranslations of grammatical structures, ambiguous words or numbers, omissions of relevant prefixes or negation, and incorrect explanations of technical terms. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Workshop Patient-Oriented Lang. Process., CL4Health LREC-COLING - Workshop Proc.
ISBN
978-249381425-8
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
44-53
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—