Partitions of graphs into cographs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10081040" target="_blank" >RIV/00216208:11320/10:10081040 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Partitions of graphs into cographs
Popis výsledku v původním jazyce
Cographs form the minimal family of graphs containing K-1 that is closed with respect to complementation and disjoint union. We discuss vertex partitions of graphs into the smallest number of cographs. We introduce a new parameter, calling the minimum order of such a partition the c-chromatic number of the graph. We begin by axiomatizing several well-known graphical parameters as motivation for this function. We present several bounds on c-chromatic number in terms of well-known expressions. We show that if a graph is triangle-free, then its chromatic number is bounded between the c-chromatic number and twice this number. We show that both bounds are sharp for graphs with arbitrarily high girth. This provides an alternative proof to a result by Broereand Mynhardt. We show that any planar graph with girth at least 11 has a c-chromatic number at most two. We close with several remarks on computational complexity; in particular, that computing the c-chromatic number is NP-complete for pl
Název v anglickém jazyce
Partitions of graphs into cographs
Popis výsledku anglicky
Cographs form the minimal family of graphs containing K-1 that is closed with respect to complementation and disjoint union. We discuss vertex partitions of graphs into the smallest number of cographs. We introduce a new parameter, calling the minimum order of such a partition the c-chromatic number of the graph. We begin by axiomatizing several well-known graphical parameters as motivation for this function. We present several bounds on c-chromatic number in terms of well-known expressions. We show that if a graph is triangle-free, then its chromatic number is bounded between the c-chromatic number and twice this number. We show that both bounds are sharp for graphs with arbitrarily high girth. This provides an alternative proof to a result by Broereand Mynhardt. We show that any planar graph with girth at least 11 has a c-chromatic number at most two. We close with several remarks on computational complexity; in particular, that computing the c-chromatic number is NP-complete for pl
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Svazek periodika
310
Číslo periodika v rámci svazku
24
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000284251900001
EID výsledku v databázi Scopus
—