Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Partitions of graphs into cographs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10081040" target="_blank" >RIV/00216208:11320/10:10081040 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Partitions of graphs into cographs

  • Popis výsledku v původním jazyce

    Cographs form the minimal family of graphs containing K-1 that is closed with respect to complementation and disjoint union. We discuss vertex partitions of graphs into the smallest number of cographs. We introduce a new parameter, calling the minimum order of such a partition the c-chromatic number of the graph. We begin by axiomatizing several well-known graphical parameters as motivation for this function. We present several bounds on c-chromatic number in terms of well-known expressions. We show that if a graph is triangle-free, then its chromatic number is bounded between the c-chromatic number and twice this number. We show that both bounds are sharp for graphs with arbitrarily high girth. This provides an alternative proof to a result by Broereand Mynhardt. We show that any planar graph with girth at least 11 has a c-chromatic number at most two. We close with several remarks on computational complexity; in particular, that computing the c-chromatic number is NP-complete for pl

  • Název v anglickém jazyce

    Partitions of graphs into cographs

  • Popis výsledku anglicky

    Cographs form the minimal family of graphs containing K-1 that is closed with respect to complementation and disjoint union. We discuss vertex partitions of graphs into the smallest number of cographs. We introduce a new parameter, calling the minimum order of such a partition the c-chromatic number of the graph. We begin by axiomatizing several well-known graphical parameters as motivation for this function. We present several bounds on c-chromatic number in terms of well-known expressions. We show that if a graph is triangle-free, then its chromatic number is bounded between the c-chromatic number and twice this number. We show that both bounds are sharp for graphs with arbitrarily high girth. This provides an alternative proof to a result by Broereand Mynhardt. We show that any planar graph with girth at least 11 has a c-chromatic number at most two. We close with several remarks on computational complexity; in particular, that computing the c-chromatic number is NP-complete for pl

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

  • Svazek periodika

    310

  • Číslo periodika v rámci svazku

    24

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000284251900001

  • EID výsledku v databázi Scopus