Linear rankwidth meets stability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422250" target="_blank" >RIV/00216208:11320/20:10422250 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/1.9781611975994.72" target="_blank" >https://doi.org/10.1137/1.9781611975994.72</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/1.9781611975994.72" target="_blank" >10.1137/1.9781611975994.72</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linear rankwidth meets stability
Popis výsledku v původním jazyce
Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths. These results show a strong link between the properties of these graph classes considered from the point of view of structural graph theory and from the point of view of finite model theory. We take both views on classes with bounded linear rankwidth and prove structural and model theoretic properties of these classes: 1) Graphs with linear rankwidth at most r are linearly chi-bounded. Actually, they have bounded c-chromatic number, meaning that they can be colored with f(r) colors, each color inducing a cograph. 2) Based on a Ramsey-like argument, we prove for every proper hereditary family F of graphs (like cographs) that there is a class with bounded rankwidth that does not have the property that graphs in it can be colored by a bounded number of colors, each inducing a subgraph in 3) For C class with bounded linear rankwidth the following conditions are equivalent: a) C is stable, b) C excludes some half-graph as a semi-induced subgraph, c) C is a first-order transduction of a class with bounded pathwidth. These results open the perspective to study classes admitting low linear rankwidth covers.
Název v anglickém jazyce
Linear rankwidth meets stability
Popis výsledku anglicky
Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths. These results show a strong link between the properties of these graph classes considered from the point of view of structural graph theory and from the point of view of finite model theory. We take both views on classes with bounded linear rankwidth and prove structural and model theoretic properties of these classes: 1) Graphs with linear rankwidth at most r are linearly chi-bounded. Actually, they have bounded c-chromatic number, meaning that they can be colored with f(r) colors, each color inducing a cograph. 2) Based on a Ramsey-like argument, we prove for every proper hereditary family F of graphs (like cographs) that there is a class with bounded rankwidth that does not have the property that graphs in it can be colored by a bounded number of colors, each inducing a subgraph in 3) For C class with bounded linear rankwidth the following conditions are equivalent: a) C is stable, b) C excludes some half-graph as a semi-induced subgraph, c) C is a first-order transduction of a class with bounded pathwidth. These results open the perspective to study classes admitting low linear rankwidth covers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20)
ISBN
978-1-61197-599-4
ISSN
—
e-ISSN
—
Počet stran výsledku
20
Strana od-do
1180-1199
Název nakladatele
ASSOC COMPUTING MACHINERY
Místo vydání
NEW YORK
Místo konání akce
Salt Lake City
Datum konání akce
5. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000554408101016