Rankwidth meets stability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438592" target="_blank" >RIV/00216208:11320/21:10438592 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/1.9781611976465.120" target="_blank" >https://doi.org/10.1137/1.9781611976465.120</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/1.9781611976465.120" target="_blank" >10.1137/1.9781611976465.120</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rankwidth meets stability
Popis výsledku v původním jazyce
We study two notions of being well-structured for classes of graphs that are inspired by classic model theory. A class of graphs C is monadically stable if it is impossible to define arbitrarily long linear orders in vertex-colored graphs from C using a fixed first-order formula. Similarly, monadic dependence corresponds to the impossibility of defining all graphs in this way. Examples of monadically stable graph classes are nowhere dense classes, which provide a robust theory of sparsity. Examples of monadically dependent classes are classes of bounded rankwidth (or equivalently, bounded cliquewidth), which can be seen as a dense analog of classes of bounded treewidth. Thus, monadic stability and monadic dependence extend classical structural notions for graphs by viewing them in a wider, model-theoretical context. We explore this emerging theory by proving the following: 1) A class of graphs C is a first-order transduction of a class with bounded treewidth if and only if C has bounded rankwidth and a stable edge relation (i.e. graphs from C exclude some half-graph as a semi-induced subgraph). 2) If a class of graphs C is monadically dependent and not monadically stable, then C has in fact an unstable edge relation. As a consequence, we show that classes with bounded rankwidth excluding some half-graph as a semi-induced subgraph are linearly χ-bounded. Our proofs are effective and lead to polynomial time algorithms.
Název v anglickém jazyce
Rankwidth meets stability
Popis výsledku anglicky
We study two notions of being well-structured for classes of graphs that are inspired by classic model theory. A class of graphs C is monadically stable if it is impossible to define arbitrarily long linear orders in vertex-colored graphs from C using a fixed first-order formula. Similarly, monadic dependence corresponds to the impossibility of defining all graphs in this way. Examples of monadically stable graph classes are nowhere dense classes, which provide a robust theory of sparsity. Examples of monadically dependent classes are classes of bounded rankwidth (or equivalently, bounded cliquewidth), which can be seen as a dense analog of classes of bounded treewidth. Thus, monadic stability and monadic dependence extend classical structural notions for graphs by viewing them in a wider, model-theoretical context. We explore this emerging theory by proving the following: 1) A class of graphs C is a first-order transduction of a class with bounded treewidth if and only if C has bounded rankwidth and a stable edge relation (i.e. graphs from C exclude some half-graph as a semi-induced subgraph). 2) If a class of graphs C is monadically dependent and not monadically stable, then C has in fact an unstable edge relation. As a consequence, we show that classes with bounded rankwidth excluding some half-graph as a semi-induced subgraph are linearly χ-bounded. Our proofs are effective and lead to polynomial time algorithms.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
ISBN
978-1-61197-646-5
ISSN
—
e-ISSN
—
Počet stran výsledku
20
Strana od-do
2014-2033
Název nakladatele
Association for Computing Machinery
Místo vydání
Neuveden
Místo konání akce
Online
Datum konání akce
10. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—