Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rankwidth meets stability

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438592" target="_blank" >RIV/00216208:11320/21:10438592 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1137/1.9781611976465.120" target="_blank" >https://doi.org/10.1137/1.9781611976465.120</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/1.9781611976465.120" target="_blank" >10.1137/1.9781611976465.120</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Rankwidth meets stability

  • Popis výsledku v původním jazyce

    We study two notions of being well-structured for classes of graphs that are inspired by classic model theory. A class of graphs C is monadically stable if it is impossible to define arbitrarily long linear orders in vertex-colored graphs from C using a fixed first-order formula. Similarly, monadic dependence corresponds to the impossibility of defining all graphs in this way. Examples of monadically stable graph classes are nowhere dense classes, which provide a robust theory of sparsity. Examples of monadically dependent classes are classes of bounded rankwidth (or equivalently, bounded cliquewidth), which can be seen as a dense analog of classes of bounded treewidth. Thus, monadic stability and monadic dependence extend classical structural notions for graphs by viewing them in a wider, model-theoretical context. We explore this emerging theory by proving the following: 1) A class of graphs C is a first-order transduction of a class with bounded treewidth if and only if C has bounded rankwidth and a stable edge relation (i.e. graphs from C exclude some half-graph as a semi-induced subgraph). 2) If a class of graphs C is monadically dependent and not monadically stable, then C has in fact an unstable edge relation. As a consequence, we show that classes with bounded rankwidth excluding some half-graph as a semi-induced subgraph are linearly χ-bounded. Our proofs are effective and lead to polynomial time algorithms.

  • Název v anglickém jazyce

    Rankwidth meets stability

  • Popis výsledku anglicky

    We study two notions of being well-structured for classes of graphs that are inspired by classic model theory. A class of graphs C is monadically stable if it is impossible to define arbitrarily long linear orders in vertex-colored graphs from C using a fixed first-order formula. Similarly, monadic dependence corresponds to the impossibility of defining all graphs in this way. Examples of monadically stable graph classes are nowhere dense classes, which provide a robust theory of sparsity. Examples of monadically dependent classes are classes of bounded rankwidth (or equivalently, bounded cliquewidth), which can be seen as a dense analog of classes of bounded treewidth. Thus, monadic stability and monadic dependence extend classical structural notions for graphs by viewing them in a wider, model-theoretical context. We explore this emerging theory by proving the following: 1) A class of graphs C is a first-order transduction of a class with bounded treewidth if and only if C has bounded rankwidth and a stable edge relation (i.e. graphs from C exclude some half-graph as a semi-induced subgraph). 2) If a class of graphs C is monadically dependent and not monadically stable, then C has in fact an unstable edge relation. As a consequence, we show that classes with bounded rankwidth excluding some half-graph as a semi-induced subgraph are linearly χ-bounded. Our proofs are effective and lead to polynomial time algorithms.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

  • ISBN

    978-1-61197-646-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    20

  • Strana od-do

    2014-2033

  • Název nakladatele

    Association for Computing Machinery

  • Místo vydání

    Neuveden

  • Místo konání akce

    Online

  • Datum konání akce

    10. 1. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku