Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Classes of graphs with low complexity: The case of classes with bounded linear rankwidth

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10422255" target="_blank" >RIV/00216208:11320/21:10422255 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rb4StkImBZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rb4StkImBZ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2020.103223" target="_blank" >10.1016/j.ejc.2020.103223</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Classes of graphs with low complexity: The case of classes with bounded linear rankwidth

  • Popis výsledku v původním jazyce

    Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths - a result that shows a strong link between the properties of these graph classes considered from the point of view of structural graph theory and from the point of view of finite model theory. We take both views on classes with bounded linear rankwidth and prove structural and model theoretic properties of these classes. The structural results we obtain are the following. (1) The number of unlabeled graphs of order n with linear rank-width at most r is at most [(2(r) + 1)(r + 1)! 2((2r))3(r+1)](n) (2) Graphs with linear rankwidth at most r are linearly chi-bounded. Actually, they have bounded c-chromatic number, meaning that they can be colored with f (r) colors, each color inducing a cograph. (3) To the contrary, based on a Ramsey-like argument, we prove for every proper hereditary family F-of graphs (like cographs) that there is a class with bounded rankwidth that does not have the property that graphs in it can be colored by a bounded number of colors, each inducing a subgraph in F. From the model theoretical side we obtain the following results: (1) A direct short proof that graphs with linear rankwidth at most r are first-order transductions of linear orders. This result could also be derived from Colcombet&apos;s theorem on firstorder transduction of linear orders and the equivalence of linear rankwidth with linear cliquewidth. (2) For a class b with bounded linear rankwidth the following conditions are equivalent: (a) b is stable, (b) b excludes some half-graph as a semi-induced subgraph, (c) b is a first-order transduction of a class with bounded pathwidth. These results open the perspective to study classes admitting low linear rankwidth covers. (C) 2020 Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    Classes of graphs with low complexity: The case of classes with bounded linear rankwidth

  • Popis výsledku anglicky

    Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths - a result that shows a strong link between the properties of these graph classes considered from the point of view of structural graph theory and from the point of view of finite model theory. We take both views on classes with bounded linear rankwidth and prove structural and model theoretic properties of these classes. The structural results we obtain are the following. (1) The number of unlabeled graphs of order n with linear rank-width at most r is at most [(2(r) + 1)(r + 1)! 2((2r))3(r+1)](n) (2) Graphs with linear rankwidth at most r are linearly chi-bounded. Actually, they have bounded c-chromatic number, meaning that they can be colored with f (r) colors, each color inducing a cograph. (3) To the contrary, based on a Ramsey-like argument, we prove for every proper hereditary family F-of graphs (like cographs) that there is a class with bounded rankwidth that does not have the property that graphs in it can be colored by a bounded number of colors, each inducing a subgraph in F. From the model theoretical side we obtain the following results: (1) A direct short proof that graphs with linear rankwidth at most r are first-order transductions of linear orders. This result could also be derived from Colcombet&apos;s theorem on firstorder transduction of linear orders and the equivalence of linear rankwidth with linear cliquewidth. (2) For a class b with bounded linear rankwidth the following conditions are equivalent: (a) b is stable, (b) b excludes some half-graph as a semi-induced subgraph, (c) b is a first-order transduction of a class with bounded pathwidth. These results open the perspective to study classes admitting low linear rankwidth covers. (C) 2020 Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Svazek periodika

    91

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    29

  • Strana od-do

    103223

  • Kód UT WoS článku

    000579842800024

  • EID výsledku v databázi Scopus

    2-s2.0-85089827039