First order properties on nowhere dense structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10105036" target="_blank" >RIV/00216208:11320/10:10105036 - isvavai.cz</a>
Výsledek na webu
<a href="http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&page=toc&handle=euclid.jsl/1278682199" target="_blank" >http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&page=toc&handle=euclid.jsl/1278682199</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
First order properties on nowhere dense structures
Popis výsledku v původním jazyce
A set A of vertices of a graph G is called d-scattered in G if no two d-neighborhoods of (distinct) vertices of A intersect. In other words. A is d-scattered if no two distinct vertices of A have distance at most 2d. This notion was isolated in the context of finite model theory by Ajtai and Gurevich and recently it played a prominent role in the study of homomorphism preservation theorems for special classes of structures (such as minor closed classes). This in turn led to the notions of wide, almost wide and quasi-wide classes of graphs. It has been proved previously that minor closed classes and classes of graphs with locally forbidden minors are examples of such classes and thus (relativized) homomorphism preservation theorem holds for them. In this paper we show that (more general) classes wills bounded expansion and (newly defined) classes with bounded local expansion and even (very general) nowhere dense classes are quasi wide. This not only strictly generalizes the previous res
Název v anglickém jazyce
First order properties on nowhere dense structures
Popis výsledku anglicky
A set A of vertices of a graph G is called d-scattered in G if no two d-neighborhoods of (distinct) vertices of A intersect. In other words. A is d-scattered if no two distinct vertices of A have distance at most 2d. This notion was isolated in the context of finite model theory by Ajtai and Gurevich and recently it played a prominent role in the study of homomorphism preservation theorems for special classes of structures (such as minor closed classes). This in turn led to the notions of wide, almost wide and quasi-wide classes of graphs. It has been proved previously that minor closed classes and classes of graphs with locally forbidden minors are examples of such classes and thus (relativized) homomorphism preservation theorem holds for them. In this paper we show that (more general) classes wills bounded expansion and (newly defined) classes with bounded local expansion and even (very general) nowhere dense classes are quasi wide. This not only strictly generalizes the previous res
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Symbolic Logic
ISSN
0022-4812
e-ISSN
—
Svazek periodika
75
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
868-887
Kód UT WoS článku
000281707200005
EID výsledku v databázi Scopus
—