On the signed chromatic number of some classes of graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00128974" target="_blank" >RIV/00216224:14330/22:00128974 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.disc.2021.112664" target="_blank" >https://doi.org/10.1016/j.disc.2021.112664</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2021.112664" target="_blank" >10.1016/j.disc.2021.112664</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the signed chromatic number of some classes of graphs
Popis výsledku v původním jazyce
A signed graph (G, sigma) is a graph G along with a function sigma : E(G) -> {+, -}. A closed walk of a signed graph is positive (resp., negative) if it has an even (resp., odd) number of negative edges, counting repetitions. A homomorphism of a (simple) signed graph to another signed graph is a vertex-mapping that preserves adjacencies and signs of closed walks. The signed chromatic number of a signed graph (G, sigma) is the minimum number of vertices vertical bar V (H)vertical bar of a signed graph (H, pi) to which (G, sigma) admits a homomorphism. Homomorphisms of signed graphs have been attracting growing attention in the last decades, especially due to their strong connections to the theories of graph coloring and graph minors. These homomorphisms have been particularly studied through the scope of the signed chromatic number. In this work, we provide new results and bounds on the signed chromatic number of several families of signed graphs (planar graphs, triangle-free planar graphs, K-n-minor-free graphs, and bounded-degree graphs).
Název v anglickém jazyce
On the signed chromatic number of some classes of graphs
Popis výsledku anglicky
A signed graph (G, sigma) is a graph G along with a function sigma : E(G) -> {+, -}. A closed walk of a signed graph is positive (resp., negative) if it has an even (resp., odd) number of negative edges, counting repetitions. A homomorphism of a (simple) signed graph to another signed graph is a vertex-mapping that preserves adjacencies and signs of closed walks. The signed chromatic number of a signed graph (G, sigma) is the minimum number of vertices vertical bar V (H)vertical bar of a signed graph (H, pi) to which (G, sigma) admits a homomorphism. Homomorphisms of signed graphs have been attracting growing attention in the last decades, especially due to their strong connections to the theories of graph coloring and graph minors. These homomorphisms have been particularly studied through the scope of the signed chromatic number. In this work, we provide new results and bounds on the signed chromatic number of several families of signed graphs (planar graphs, triangle-free planar graphs, K-n-minor-free graphs, and bounded-degree graphs).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Svazek periodika
345
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000730157200001
EID výsledku v databázi Scopus
2-s2.0-85119087176