Comparing Neural Networks and ARMA Models in Artificial Stock Market
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10102906" target="_blank" >RIV/00216208:11320/11:10102906 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/11:00361537
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing Neural Networks and ARMA Models in Artificial Stock Market
Popis výsledku v původním jazyce
We create a new way of comparing models for forecasting stock prices. Our idea was to create a simple game in which the individual models would compete against each other. We were inspired by the heterogeneous agent models and we created an artificial market. Models act in our artificial market as a forecasting strategies of each agent who trades on the market. Each agent uses his own model for predicting future prices of risky asset and its dividends. Delayed prices of risky asset and dividends provided the basis for predictions. The way how agents trade affects the price of risky asset, which in turn influences their expectations and therefore their decisions whether to buy or sell. Moreover, each agent can recalculate his strategy, if he is not satisfied with its performance. So the forecasting strategies and the artificial market evolve side by side. The models we confront are neural networks VARMA models. The winning model is the one which earns the most money.
Název v anglickém jazyce
Comparing Neural Networks and ARMA Models in Artificial Stock Market
Popis výsledku anglicky
We create a new way of comparing models for forecasting stock prices. Our idea was to create a simple game in which the individual models would compete against each other. We were inspired by the heterogeneous agent models and we created an artificial market. Models act in our artificial market as a forecasting strategies of each agent who trades on the market. Each agent uses his own model for predicting future prices of risky asset and its dividends. Delayed prices of risky asset and dividends provided the basis for predictions. The way how agents trade affects the price of risky asset, which in turn influences their expectations and therefore their decisions whether to buy or sell. Moreover, each agent can recalculate his strategy, if he is not satisfied with its performance. So the forecasting strategies and the artificial market evolve side by side. The models we confront are neural networks VARMA models. The winning model is the one which earns the most money.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GD402%2F09%2FH045" target="_blank" >GD402/09/H045: Nelineární dynamika v peněžní ekonomii a financích. Teorie a empirické modely.</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of the Czech Econometric Society
ISSN
1212-074X
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
28
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
13
Strana od-do
53-65
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—