Tamil dependency parsing: results using rule based and corpus based approaches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10107821" target="_blank" >RIV/00216208:11320/11:10107821 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-642-19400-9_7" target="_blank" >http://dx.doi.org/10.1007/978-3-642-19400-9_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-19400-9_7" target="_blank" >10.1007/978-3-642-19400-9_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tamil dependency parsing: results using rule based and corpus based approaches
Popis výsledku v původním jazyce
Very few attempts have been reported in the literature on dependency parsing for Tamil. In this paper, we report results obtained for Tamil dependency parsing with rule-based and corpus-based approaches. We designed annotation scheme partially based on Prague Dependency Treebank (PDT) and manually annotated Tamil data (about 3000 words) with dependency relations. For corpus-based approach, we used two well known parsers MaltParser and MSTParser, and for the rule-based approach, we implemented series oflinguistic rules (for resolving coordination, complementation, predicate identification and so on) to build dependency structure for Tamil sentences. Our initial results show that, both rule-based and corpus-based approaches achieved the accuracy of morethan 74% for the unlabeled task and more than 65% for the labeled tasks. Rule-based parsing accuracy dropped considerably when the input was tagged automatically.
Název v anglickém jazyce
Tamil dependency parsing: results using rule based and corpus based approaches
Popis výsledku anglicky
Very few attempts have been reported in the literature on dependency parsing for Tamil. In this paper, we report results obtained for Tamil dependency parsing with rule-based and corpus-based approaches. We designed annotation scheme partially based on Prague Dependency Treebank (PDT) and manually annotated Tamil data (about 3000 words) with dependency relations. For corpus-based approach, we used two well known parsers MaltParser and MSTParser, and for the rule-based approach, we implemented series oflinguistic rules (for resolving coordination, complementation, predicate identification and so on) to build dependency structure for Tamil sentences. Our initial results show that, both rule-based and corpus-based approaches achieved the accuracy of morethan 74% for the unlabeled task and more than 65% for the labeled tasks. Rule-based parsing accuracy dropped considerably when the input was tagged automatically.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AI - Jazykověda
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC536" target="_blank" >LC536: Centrum komputační lingvistiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Svazek periodika
6608
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
82-95
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—