Hotelling's test for highly correlated data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10108592" target="_blank" >RIV/00216208:11320/11:10108592 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hotelling's test for highly correlated data
Popis výsledku v původním jazyce
This paper is motivated by the analysis of gene expression sets, especially by finding dieffrentially expressed gene sets between two phenotypes. Gene log2 expression levels are highly correlated and, very likely, have approximately normal distribution.Therefore, it seems reasonable to use two-sample Hotelling's test for such data. We discover some unexpected properties of the test making it different from the majority of tests previously used for such data. It appears that the Hotelling's test does not always reach maximal power when all marginal distributions are different. For highly correlated data its maximal power is attained when about a half of marginal distributions are essentially different. For the case when the correlation coefficient is greater than 0.5 this test is more powerful if only one marginal distribution is shifted, comparing to the case when all marginal distributions are equally shifted. Moreover, when the correlation coefficient increases the power of Hotellin
Název v anglickém jazyce
Hotelling's test for highly correlated data
Popis výsledku anglicky
This paper is motivated by the analysis of gene expression sets, especially by finding dieffrentially expressed gene sets between two phenotypes. Gene log2 expression levels are highly correlated and, very likely, have approximately normal distribution.Therefore, it seems reasonable to use two-sample Hotelling's test for such data. We discover some unexpected properties of the test making it different from the majority of tests previously used for such data. It appears that the Hotelling's test does not always reach maximal power when all marginal distributions are different. For highly correlated data its maximal power is attained when about a half of marginal distributions are essentially different. For the case when the correlation coefficient is greater than 0.5 this test is more powerful if only one marginal distribution is shifted, comparing to the case when all marginal distributions are equally shifted. Moreover, when the correlation coefficient increases the power of Hotellin
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Carolinae - Mathematica et Physica
ISSN
0001-7140
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
67-76
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—