On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10124006" target="_blank" >RIV/00216208:11320/12:10124006 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-642-30191-9_18" target="_blank" >http://dx.doi.org/10.1007/978-3-642-30191-9_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-30191-9_18" target="_blank" >10.1007/978-3-642-30191-9_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering
Popis výsledku v původním jazyce
Tandem mass spectrometry is a well-known technique for identification of protein sequences from an "in vitro" sample. To identify the sequences from spectra captured by a spectrometer, the similarity search in a database of hypothetical mass spectra is often used. For this purpose, a database of known protein sequences is utilized to generate the hypothetical spectra. Since the number of sequences in the databases grows rapidly over the time, several approaches have been proposed to index the databasesof mass spectra. In this paper, we improve an approach based on the non-metric similarity search where the M-tree and the TriGen algorithm are employed for fast and approximative search. We show that preprocessing of mass spectra by clustering speeds upthe identification of sequences more than 100x with respect to the sequential scan of the entire database. Moreover, when the protein candidates are refined by sequential scan in the postprocessing step, the whole approach exhibits precis
Název v anglickém jazyce
On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering
Popis výsledku anglicky
Tandem mass spectrometry is a well-known technique for identification of protein sequences from an "in vitro" sample. To identify the sequences from spectra captured by a spectrometer, the similarity search in a database of hypothetical mass spectra is often used. For this purpose, a database of known protein sequences is utilized to generate the hypothetical spectra. Since the number of sequences in the databases grows rapidly over the time, several approaches have been proposed to index the databasesof mass spectra. In this paper, we improve an approach based on the non-metric similarity search where the M-tree and the TriGen algorithm are employed for fast and approximative search. We show that preprocessing of mass spectra by clustering speeds upthe identification of sequences more than 100x with respect to the sequential scan of the entire database. Moreover, when the protein candidates are refined by sequential scan in the postprocessing step, the whole approach exhibits precis
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Svazek periodika
2012
Číslo periodika v rámci svazku
7292
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
189-200
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—