CRITICAL VALUES AND LEVEL SETS OF DISTANCE FUNCTIONS IN RIEMANNIAN, ALEXANDROV AND MINKOWSKI SPACE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10126164" target="_blank" >RIV/00216208:11320/12:10126164 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CRITICAL VALUES AND LEVEL SETS OF DISTANCE FUNCTIONS IN RIEMANNIAN, ALEXANDROV AND MINKOWSKI SPACE
Popis výsledku v původním jazyce
Let F be a closed subset of R^n and n = 2 or n = 3. S. Ferry (1975) proved that then, for almost all r > 0, the level set (distance sphere, r-boundary) S^r(F) := {x is an element of R^n : dist(x, F) = r} is a topological (n - 1)-dimensional manifold. This result was improved by J.H.G. Fu (1985). We show that Ferry's result is an easy consequence of the only fact that the distance function d(x) = dist(x, F) is locally DC and has no stationary point in R^nF. Using this observation, we show that Ferry's (and even Fu's) result extends to sufficiently smooth normed linear spaces X with dim X is an element of {2, 3} (e.g., to l(n)(p), n = 2, 3, p }= 2), which improves and generalizes a result of R. Gariepy and W.D. Pepe (1972). By the same method we also generalize Fu's result to Riemannian manifolds and improve a result of K. Shiohama and M. Tanaka (1996) on distance spheres in Alexandrov spaces.
Název v anglickém jazyce
CRITICAL VALUES AND LEVEL SETS OF DISTANCE FUNCTIONS IN RIEMANNIAN, ALEXANDROV AND MINKOWSKI SPACE
Popis výsledku anglicky
Let F be a closed subset of R^n and n = 2 or n = 3. S. Ferry (1975) proved that then, for almost all r > 0, the level set (distance sphere, r-boundary) S^r(F) := {x is an element of R^n : dist(x, F) = r} is a topological (n - 1)-dimensional manifold. This result was improved by J.H.G. Fu (1985). We show that Ferry's result is an easy consequence of the only fact that the distance function d(x) = dist(x, F) is locally DC and has no stationary point in R^nF. Using this observation, we show that Ferry's (and even Fu's) result extends to sufficiently smooth normed linear spaces X with dim X is an element of {2, 3} (e.g., to l(n)(p), n = 2, 3, p }= 2), which improves and generalizes a result of R. Gariepy and W.D. Pepe (1972). By the same method we also generalize Fu's result to Riemannian manifolds and improve a result of K. Shiohama and M. Tanaka (1996) on distance spheres in Alexandrov spaces.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F0067" target="_blank" >GA201/09/0067: Teorie reálných funkcí a deskriptivní teorie množin II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Houston Journal of Mathematics
ISSN
0362-1588
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
445-467
Kód UT WoS článku
000309169800008
EID výsledku v databázi Scopus
—