Shape Optimization in 2D Contact Problems with Given Friction and a Solution-Dependent Coefficient of Friction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127026" target="_blank" >RIV/00216208:11320/12:10127026 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/12:00377141
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11228-011-0179-7" target="_blank" >http://dx.doi.org/10.1007/s11228-011-0179-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11228-011-0179-7" target="_blank" >10.1007/s11228-011-0179-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Shape Optimization in 2D Contact Problems with Given Friction and a Solution-Dependent Coefficient of Friction
Popis výsledku v původním jazyce
The paper deals with shape optimization of elastic bodies in unilateral contact. The aim is to extend the existing results to the case of contact problems, where the coefficient of friction depends on the solution. We consider the two-dimensional Signorini problem, coupled with the physically less accurate model of given friction, but assume a solution-dependent coefficient of friction. First, we investigate the shape optimization problem in the continuous, infinite-dimensional setting, followed by a suitable finite-dimensional approximation based on the finite-element method. Convergence analysis is presented as well. Next, an algebraic form of the state problem is studied, which is obtained from the discretized problem by further approximating the frictional term by a quadrature rule. It is shown that if the coefficient of friction is Lipschitz continuous with a sufficiently small modulus, then the algebraic state problem is uniquely solvable and its solution is a Lipschitz continuou
Název v anglickém jazyce
Shape Optimization in 2D Contact Problems with Given Friction and a Solution-Dependent Coefficient of Friction
Popis výsledku anglicky
The paper deals with shape optimization of elastic bodies in unilateral contact. The aim is to extend the existing results to the case of contact problems, where the coefficient of friction depends on the solution. We consider the two-dimensional Signorini problem, coupled with the physically less accurate model of given friction, but assume a solution-dependent coefficient of friction. First, we investigate the shape optimization problem in the continuous, infinite-dimensional setting, followed by a suitable finite-dimensional approximation based on the finite-element method. Convergence analysis is presented as well. Next, an algebraic form of the state problem is studied, which is obtained from the discretized problem by further approximating the frictional term by a quadrature rule. It is shown that if the coefficient of friction is Lipschitz continuous with a sufficiently small modulus, then the algebraic state problem is uniquely solvable and its solution is a Lipschitz continuou
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA100750802" target="_blank" >IAA100750802: Metody nehladké a mnohoznačné analýzy v mechanice a termomechanice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Set-Valued and Variational Analysis
ISSN
1877-0533
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
29
Strana od-do
31-59
Kód UT WoS článku
000299962100003
EID výsledku v databázi Scopus
—