Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mechanical oscillators described by a system of differential-algebraic equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127325" target="_blank" >RIV/00216208:11320/12:10127325 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s10492-012-0009-8" target="_blank" >http://dx.doi.org/10.1007/s10492-012-0009-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10492-012-0009-8" target="_blank" >10.1007/s10492-012-0009-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mechanical oscillators described by a system of differential-algebraic equations

  • Popis výsledku v původním jazyce

    The classical framework for studying the equations governing the motion of lumped parameter systems presumes one can provide expressions for the forces in terms of kinematical quantities for the individual constituents. This is not possible for a very large class of problems where one can only provide implicit relations between the forces and the kinematical quantities. In certain special cases, one can provide non-invertible expressions for a kinematical quantity in terms of the force, which then reduces the problem to a system of differential-algebraic equations. We study such a system of differential-algebraic equations, describing the motions of the mass-spring-dashpot oscillator. Assuming a monotone relationship between the displacement, velocityand the respective forces, we prove global existence and uniqueness of solutions. We also analyze the behavior of some simple particular models.

  • Název v anglickém jazyce

    Mechanical oscillators described by a system of differential-algebraic equations

  • Popis výsledku anglicky

    The classical framework for studying the equations governing the motion of lumped parameter systems presumes one can provide expressions for the forces in terms of kinematical quantities for the individual constituents. This is not possible for a very large class of problems where one can only provide implicit relations between the forces and the kinematical quantities. In certain special cases, one can provide non-invertible expressions for a kinematical quantity in terms of the force, which then reduces the problem to a system of differential-algebraic equations. We study such a system of differential-algebraic equations, describing the motions of the mass-spring-dashpot oscillator. Assuming a monotone relationship between the displacement, velocityand the respective forces, we prove global existence and uniqueness of solutions. We also analyze the behavior of some simple particular models.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Matematická a počítačová analýza evolučních procesů v nelineárních viskoelastických tekutinách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applications of Mathematics

  • ISSN

    0862-7940

  • e-ISSN

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    14

  • Strana od-do

    129-142

  • Kód UT WoS článku

    000302093400004

  • EID výsledku v databázi Scopus