Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Global Well-Posedness for Two-Dimensional Flows of Viscoelastic Rate-Type Fluids with Stress Diffusion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452919" target="_blank" >RIV/00216208:11320/22:10452919 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jC60qpSH_p" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jC60qpSH_p</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-022-00696-1" target="_blank" >10.1007/s00021-022-00696-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Global Well-Posedness for Two-Dimensional Flows of Viscoelastic Rate-Type Fluids with Stress Diffusion

  • Popis výsledku v původním jazyce

    We consider the system of partial differential equations governing two-dimensional flows of a robust class of viscoelastic rate-type fluids with stress diffusion, involving a general objective derivative. The studied system generalizes the incompressible Navier-Stokes equations for the fluid velocity v and pressure p by the presence of an additional term in the constitutive equation for the Cauchy stress expressed in terms of a positive definite tensor B. The tensor B evolves according to a diffusive variant of an equation that can be viewed as a combination of corresponding counterparts of Oldroyd-B and Giesekus models. Considering spatially periodic problem, we prove that for arbitrary initial data and forcing in appropriate L-2 spaces, there exists a unique globally defined weak solution to the equations of motion, and more regular initial data and forcing launch a more regular solution with B positive definite everywhere.

  • Název v anglickém jazyce

    Global Well-Posedness for Two-Dimensional Flows of Viscoelastic Rate-Type Fluids with Stress Diffusion

  • Popis výsledku anglicky

    We consider the system of partial differential equations governing two-dimensional flows of a robust class of viscoelastic rate-type fluids with stress diffusion, involving a general objective derivative. The studied system generalizes the incompressible Navier-Stokes equations for the fluid velocity v and pressure p by the presence of an additional term in the constitutive equation for the Cauchy stress expressed in terms of a positive definite tensor B. The tensor B evolves according to a diffusive variant of an equation that can be viewed as a combination of corresponding counterparts of Oldroyd-B and Giesekus models. Considering spatially periodic problem, we prove that for arbitrary initial data and forcing in appropriate L-2 spaces, there exists a unique globally defined weak solution to the equations of motion, and more regular initial data and forcing launch a more regular solution with B positive definite everywhere.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX20-11027X" target="_blank" >GX20-11027X: Matematická analýza parciálních diferenciálních rovnic popisujících silně nerovnovážné stavy v otevřených systémech termodynamiky kontinua</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

    1422-6952

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    19

  • Strana od-do

    61

  • Kód UT WoS článku

    000801119900001

  • EID výsledku v databázi Scopus

    2-s2.0-85130748098