Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10431240" target="_blank" >RIV/00216208:11320/21:10431240 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eY8KwB9GwU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eY8KwB9GwU</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/anona-2020-0144" target="_blank" >10.1515/anona-2020-0144</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion
Popis výsledku v původním jazyce
We prove that there exists a weak solution to a system governing an unsteady flow of a viscoelastic fluid in three dimensions, for arbitrarily large time interval and data. The fluid is described by the incompressible Navier-Stokes equations for the velocity v, coupled with a diffusive variant of a combination of the Oldroyd-B and the Giesekus models for a tensor B. By a proper choice of the constitutive relations for the Helmholtz free energy (which, however, is non-standard in the current literature, despite the fact that this choice is well motivated from the point of view of physics) and for the energy dissipation, we are able to prove that B enjoys the same regularity as v in the classical three-dimensional Navier-Stokes equations. This enables us to handle any kind of objective derivative of B, thus obtaining existence results for the class of diffusive Johnson-Segalman models as well. Moreover, using a suitable approximation scheme, we are able to show that B remains positive definite if the initial datum was a positive definite matrix (in a pointwise sense). We also show how the model we are considering can be derived from basic balance equations and thermodynamical principles in a natural way.
Název v anglickém jazyce
Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion
Popis výsledku anglicky
We prove that there exists a weak solution to a system governing an unsteady flow of a viscoelastic fluid in three dimensions, for arbitrarily large time interval and data. The fluid is described by the incompressible Navier-Stokes equations for the velocity v, coupled with a diffusive variant of a combination of the Oldroyd-B and the Giesekus models for a tensor B. By a proper choice of the constitutive relations for the Helmholtz free energy (which, however, is non-standard in the current literature, despite the fact that this choice is well motivated from the point of view of physics) and for the energy dissipation, we are able to prove that B enjoys the same regularity as v in the classical three-dimensional Navier-Stokes equations. This enables us to handle any kind of objective derivative of B, thus obtaining existence results for the class of diffusive Johnson-Segalman models as well. Moreover, using a suitable approximation scheme, we are able to show that B remains positive definite if the initial datum was a positive definite matrix (in a pointwise sense). We also show how the model we are considering can be derived from basic balance equations and thermodynamical principles in a natural way.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Nonlinear Analysis
ISSN
2191-9496
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
501-521
Kód UT WoS článku
000565171600001
EID výsledku v databázi Scopus
2-s2.0-85093115287