Enhancing Recommender System with Linked Open Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10139475" target="_blank" >RIV/00216208:11320/13:10139475 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-642-40769-7_42" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-40769-7_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-40769-7_42" target="_blank" >10.1007/978-3-642-40769-7_42</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing Recommender System with Linked Open Data
Popis výsledku v původním jazyce
In this paper, we present an innovative method to use Linked Open Data (LOD) to improve content based recommender systems. We have selected the domain of secondhand bookshops, where recommending is extraordinary difficult because of high ratio of objects/users, lack of significant attributes and small number of the same items in stock. Those difficulties prevents us from successfully apply both collaborative and common content based recommenders. We have queried Czech language mutation of DBPedia in order to receive additional attributes of objects (books) to reveal nontrivial connections between them. Our approach is general and can be applied on other domains as well. Experiments show that enhancing recommender system with LOD can significantly improve its results in terms of object similarity computation and top-k objects recommendation. The main drawback hindering widespread of such systems is probably missing data about considerable portion of objects, which can however vary acros
Název v anglickém jazyce
Enhancing Recommender System with Linked Open Data
Popis výsledku anglicky
In this paper, we present an innovative method to use Linked Open Data (LOD) to improve content based recommender systems. We have selected the domain of secondhand bookshops, where recommending is extraordinary difficult because of high ratio of objects/users, lack of significant attributes and small number of the same items in stock. Those difficulties prevents us from successfully apply both collaborative and common content based recommenders. We have queried Czech language mutation of DBPedia in order to receive additional attributes of objects (books) to reveal nontrivial connections between them. Our approach is general and can be applied on other domains as well. Experiments show that enhancing recommender system with LOD can significantly improve its results in terms of object similarity computation and top-k objects recommendation. The main drawback hindering widespread of such systems is probably missing data about considerable portion of objects, which can however vary acros
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-642-40768-0
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
483-494
Název nakladatele
Springer Berlin / Heidelberg
Místo vydání
Heidelberg
Místo konání akce
Granada, Spain
Datum konání akce
18. 9. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—