Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hybrid recommendations by content-aligned Bayesian personalized ranking

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10381222" target="_blank" >RIV/00216208:11320/18:10381222 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1080/13614568.2018.1489002" target="_blank" >https://doi.org/10.1080/13614568.2018.1489002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/13614568.2018.1489002" target="_blank" >10.1080/13614568.2018.1489002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hybrid recommendations by content-aligned Bayesian personalized ranking

  • Popis výsledku v původním jazyce

    In many application domains of recommender systems, content-based (CB) information are available for users, objects or both. CB information plays an important role in the process of recommendation, especially in cold-start scenarios, where the volume of feedback data is low. However, CB information may come from several, possibly external, sources varying in reliability, coverage or relevance to the recommending task. Therefore, each content source or attribute possess a different level of informativeness, which should be taken into consideration during the process of recommendation. In this paper, we propose a Content-Aligned Bayesian Personalized Ranking Matrix Factorization method (CABPR), extending Bayesian Personalized Ranking Matrix Factorization (BPR) by incorporating multiple sources of content information into the BPR&apos;s optimization procedure. The working principle of CABPR is to calculate user-to-user and object-to-object similarity matrices based on the content information and penalize differences in latent factors of closely related users&apos; or objects&apos;. CABPR further estimates relevance of similarity matrices as a part of the optimization procedure. CABPR method is a significant extension of a previously published BPR_MCA method, featuring additional variants of optimization criterion and improved optimization procedure. Four variants of CABPR were evaluated on two publicly available datasets: MovieLens 1M dataset, extended by data from IMDB, DBTropes and ZIP code statistics and LOD-RecSys dataset extended by the information available from DBPedia. Experiments shown that CABPR significantly improves over standard BPR as well as BPR_MCA method w.r.t. several cold-start scenarios.

  • Název v anglickém jazyce

    Hybrid recommendations by content-aligned Bayesian personalized ranking

  • Popis výsledku anglicky

    In many application domains of recommender systems, content-based (CB) information are available for users, objects or both. CB information plays an important role in the process of recommendation, especially in cold-start scenarios, where the volume of feedback data is low. However, CB information may come from several, possibly external, sources varying in reliability, coverage or relevance to the recommending task. Therefore, each content source or attribute possess a different level of informativeness, which should be taken into consideration during the process of recommendation. In this paper, we propose a Content-Aligned Bayesian Personalized Ranking Matrix Factorization method (CABPR), extending Bayesian Personalized Ranking Matrix Factorization (BPR) by incorporating multiple sources of content information into the BPR&apos;s optimization procedure. The working principle of CABPR is to calculate user-to-user and object-to-object similarity matrices based on the content information and penalize differences in latent factors of closely related users&apos; or objects&apos;. CABPR further estimates relevance of similarity matrices as a part of the optimization procedure. CABPR method is a significant extension of a previously published BPR_MCA method, featuring additional variants of optimization criterion and improved optimization procedure. Four variants of CABPR were evaluated on two publicly available datasets: MovieLens 1M dataset, extended by data from IMDB, DBTropes and ZIP code statistics and LOD-RecSys dataset extended by the information available from DBPedia. Experiments shown that CABPR significantly improves over standard BPR as well as BPR_MCA method w.r.t. several cold-start scenarios.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-22224S" target="_blank" >GA17-22224S: Analytika uživatelských preferencí v modelech multimediální explorace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    New Review of Hypermedia and Multimedia

  • ISSN

    1361-4568

  • e-ISSN

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    22

  • Strana od-do

    88-109

  • Kód UT WoS článku

    000442014800003

  • EID výsledku v databázi Scopus

    2-s2.0-85048750618