Linking Content Information with Bayesian Personalized Ranking via Multiple Content Alignments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360924" target="_blank" >RIV/00216208:11320/17:10360924 - isvavai.cz</a>
Výsledek na webu
<a href="http://dl.acm.org/citation.cfm?id=3078732&CFID=788882522" target="_blank" >http://dl.acm.org/citation.cfm?id=3078732&CFID=788882522</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3078714.3078732" target="_blank" >10.1145/3078714.3078732</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linking Content Information with Bayesian Personalized Ranking via Multiple Content Alignments
Popis výsledku v původním jazyce
In many application domains of recommender systems, content-based information are available for users, objects or both. Such information can be processed during recommendation and significantly decrease the cold-start problem. However, content information may come from several, possibly external, sources. Some sources may be incomplete, less reliable or less relevant for the purpose of recommendation. Thus, each content source or attribute possess different level of informativeness, which should be taken into consideration during the process of recommendation. In this paper, we propose a multiple content alignments extension to the Bayesian Personalized Ranking Matrix Factorization (BPR-MCA). The proposed method incorporates multiple sources of content information in the form of user-to-user or object-to-object similarity matrices and aligns users' and items' latent factors ac-cording to these similarities. During the training phase, BPR-MCA also learns the relevance weight of each similarity matrix. BPR-MCA was evaluated on the MovieLens 1M dataset, extended by the content information from IMDB, DBTropes and ZIP code statistics. The experiment shows that BPR-MCA can help to significantly improve recommendation w.r.t. nDCG and AUPR over standard BPR under several cold-start scenarios.
Název v anglickém jazyce
Linking Content Information with Bayesian Personalized Ranking via Multiple Content Alignments
Popis výsledku anglicky
In many application domains of recommender systems, content-based information are available for users, objects or both. Such information can be processed during recommendation and significantly decrease the cold-start problem. However, content information may come from several, possibly external, sources. Some sources may be incomplete, less reliable or less relevant for the purpose of recommendation. Thus, each content source or attribute possess different level of informativeness, which should be taken into consideration during the process of recommendation. In this paper, we propose a multiple content alignments extension to the Bayesian Personalized Ranking Matrix Factorization (BPR-MCA). The proposed method incorporates multiple sources of content information in the form of user-to-user or object-to-object similarity matrices and aligns users' and items' latent factors ac-cording to these similarities. During the training phase, BPR-MCA also learns the relevance weight of each similarity matrix. BPR-MCA was evaluated on the MovieLens 1M dataset, extended by the content information from IMDB, DBTropes and ZIP code statistics. The experiment shows that BPR-MCA can help to significantly improve recommendation w.r.t. nDCG and AUPR over standard BPR under several cold-start scenarios.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-22224S" target="_blank" >GA17-22224S: Analytika uživatelských preferencí v modelech multimediální explorace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 28th ACM Conference on Hypertext and Social Media
ISBN
978-1-4503-4708-2
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
9
Strana od-do
175-183
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Prague, Czech Republic
Datum konání akce
4. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—