Using Linked Open Data in Recommender Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314886" target="_blank" >RIV/00216208:11320/15:10314886 - isvavai.cz</a>
Výsledek na webu
<a href="http://dl.acm.org/citation.cfm?doid=2797115.2797128" target="_blank" >http://dl.acm.org/citation.cfm?doid=2797115.2797128</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2797115.2797128" target="_blank" >10.1145/2797115.2797128</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Linked Open Data in Recommender Systems
Popis výsledku v původním jazyce
In this paper, we present our work in progress on using LOD data to enhance recommending on existing e-commerce sites. We imagine a situation of e-commerce website employing content-based or hybrid recommendation. Such recommending algorithms need relevant object attributes to produce useful recommendations. However, on some domains, usable attributes may be difficult to fill in manually and yet accessible from LOD cloud. A pilot study was conducted on the domain of secondhand bookshops. In this domain,recommending is extraordinary difficult because of high ratio between objects and users, lack of significant attributes and limited availability of items. Both collaborative filtering and content-based recommendation applicability is questionable underthis conditions. We queried both Czech and English language edition of DBPedia in order to receive additional information about objects (books) and used various recommending algorithms to learn user preferences. Our approach is general an
Název v anglickém jazyce
Using Linked Open Data in Recommender Systems
Popis výsledku anglicky
In this paper, we present our work in progress on using LOD data to enhance recommending on existing e-commerce sites. We imagine a situation of e-commerce website employing content-based or hybrid recommendation. Such recommending algorithms need relevant object attributes to produce useful recommendations. However, on some domains, usable attributes may be difficult to fill in manually and yet accessible from LOD cloud. A pilot study was conducted on the domain of secondhand bookshops. In this domain,recommending is extraordinary difficult because of high ratio between objects and users, lack of significant attributes and limited availability of items. Both collaborative filtering and content-based recommendation applicability is questionable underthis conditions. We queried both Czech and English language edition of DBPedia in order to receive additional information about objects (books) and used various recommending algorithms to learn user preferences. Our approach is general an
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics
ISBN
978-1-4503-3293-4
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
"17_1"-"17_6"
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Limassol, Cyprus
Datum konání akce
13. 7. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—