Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10139892" target="_blank" >RIV/00216208:11320/13:10139892 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.jmaa.2012.12.066" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2012.12.066</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2012.12.066" target="_blank" >10.1016/j.jmaa.2012.12.066</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index

  • Popis výsledku v původním jazyce

    We study a system of partial differential equations describing a steady flow of an incompressible generalized Newtonian fluid, wherein the Cauchy stress is concentration dependent. Namely, we consider a coupled system of the generalized Navier-Stokes equations and convection-diffusion equation with non-linear diffusivity. We prove the existence of a weak solution for certain class of models by using a generalization of the monotone operator theory which fits into the framework of generalized Sobolev spaces with variable exponent. Such a framework is involved since the function spaces, where we look for the weak solution, are "dependent" of the solution itself, and thus, we a priori do not know them. This leads us to the principal a priori assumptions on the model parameters that ensure the Wilder continuity of the variable exponent. We present here a constructive proof based on the Galerkin method that allows us to obtain the result for very general class of models.

  • Název v anglickém jazyce

    On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index

  • Popis výsledku anglicky

    We study a system of partial differential equations describing a steady flow of an incompressible generalized Newtonian fluid, wherein the Cauchy stress is concentration dependent. Namely, we consider a coupled system of the generalized Navier-Stokes equations and convection-diffusion equation with non-linear diffusivity. We prove the existence of a weak solution for certain class of models by using a generalization of the monotone operator theory which fits into the framework of generalized Sobolev spaces with variable exponent. Such a framework is involved since the function spaces, where we look for the weak solution, are "dependent" of the solution itself, and thus, we a priori do not know them. This leads us to the principal a priori assumptions on the model parameters that ensure the Wilder continuity of the variable exponent. We present here a constructive proof based on the Galerkin method that allows us to obtain the result for very general class of models.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Matematická a počítačová analýza evolučních procesů v nelineárních viskoelastických tekutinách</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Svazek periodika

    402

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    157-166

  • Kód UT WoS článku

    000315836900014

  • EID výsledku v databázi Scopus