Another view on time-varying correlations: The case of stocks and bonds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10158999" target="_blank" >RIV/00216208:11320/13:10158999 - isvavai.cz</a>
Výsledek na webu
<a href="https://mme2013.vspj.cz/about-conference/conference-proceedings" target="_blank" >https://mme2013.vspj.cz/about-conference/conference-proceedings</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Another view on time-varying correlations: The case of stocks and bonds
Popis výsledku v původním jazyce
The aim of the contribution is to introduce an innovative approach to conditional covariance and correlation modelling. This can be obviously useful in multivariate financial time series analysis, e.g. in the multivariate GARCH context. The proposed method consists of two steps. The first one is based on the LDL factorization of the conditional covariance matrix, state space modelling and associated Kalman recursions. Moreover, it is able to deliver a dynamic orthogonal transformation of given stochastic vector data. The second step of the suggested technique analyses conditional covariances of transformed time series which is indeed simplified due to its simultaneously uncorrelated components. In the paper, performance of the introduced procedure is tested in an empirical financial framework. Namely, the daily correlation links between logarithmic returns on stocks and bonds are investigated and compared with other estimated dynamic correlations gained by several common methods, e.g.
Název v anglickém jazyce
Another view on time-varying correlations: The case of stocks and bonds
Popis výsledku anglicky
The aim of the contribution is to introduce an innovative approach to conditional covariance and correlation modelling. This can be obviously useful in multivariate financial time series analysis, e.g. in the multivariate GARCH context. The proposed method consists of two steps. The first one is based on the LDL factorization of the conditional covariance matrix, state space modelling and associated Kalman recursions. Moreover, it is able to deliver a dynamic orthogonal transformation of given stochastic vector data. The second step of the suggested technique analyses conditional covariances of transformed time series which is indeed simplified due to its simultaneously uncorrelated components. In the paper, performance of the introduced procedure is tested in an empirical financial framework. Namely, the daily correlation links between logarithmic returns on stocks and bonds are investigated and compared with other estimated dynamic correlations gained by several common methods, e.g.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 31st International Conference Mathematical Methods in Economics 2013
ISBN
978-80-87035-76-4
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
249-254
Název nakladatele
College of Polytechnics Jihlava
Místo vydání
Jihlava
Místo konání akce
Jihlava
Datum konání akce
11. 9. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—