On conditional covariance modelling: An approach using state space models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329024" target="_blank" >RIV/00216208:11320/16:10329024 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.csda.2014.09.019" target="_blank" >http://dx.doi.org/10.1016/j.csda.2014.09.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csda.2014.09.019" target="_blank" >10.1016/j.csda.2014.09.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On conditional covariance modelling: An approach using state space models
Popis výsledku v původním jazyce
A novel approach to conditional covariance modelling is introduced in the context of multivariate financial time series analysis. In particular, a class of multivariate generalized autoregressive conditional heteroscedasticity models is proposed. The suggested modelling technique is based on a specific dynamic orthogonal transformation derived by the LDL factorization of the conditional covariance matrix. An observed time series is transformed into a particular form that can be further treated by means of a discrete-time state space model under corresponding assumptions. The calibration can be performed by the associated Kalman recursive formulas, which are numerically effective. The introduced procedure has been investigated by extensive Monte Carlo experiments and empirical financial applications; it has been compared with other methods commonly used in this framework. The outlined methodology has demonstrated its capabilities, and it seems to be at least competitive in this field of research.
Název v anglickém jazyce
On conditional covariance modelling: An approach using state space models
Popis výsledku anglicky
A novel approach to conditional covariance modelling is introduced in the context of multivariate financial time series analysis. In particular, a class of multivariate generalized autoregressive conditional heteroscedasticity models is proposed. The suggested modelling technique is based on a specific dynamic orthogonal transformation derived by the LDL factorization of the conditional covariance matrix. An observed time series is transformed into a particular form that can be further treated by means of a discrete-time state space model under corresponding assumptions. The calibration can be performed by the associated Kalman recursive formulas, which are numerically effective. The introduced procedure has been investigated by extensive Monte Carlo experiments and empirical financial applications; it has been compared with other methods commonly used in this framework. The outlined methodology has demonstrated its capabilities, and it seems to be at least competitive in this field of research.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics and Data Analysis
ISSN
0167-9473
e-ISSN
—
Svazek periodika
2016
Číslo periodika v rámci svazku
100
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
304-317
Kód UT WoS článku
000378368100019
EID výsledku v databázi Scopus
2-s2.0-84979729497