NERVES OF GOOD COVERS ARE ALGORITHMICALLY UNRECOGNIZABLE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190000" target="_blank" >RIV/00216208:11320/13:10190000 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/120891204" target="_blank" >http://dx.doi.org/10.1137/120891204</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/120891204" target="_blank" >10.1137/120891204</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
NERVES OF GOOD COVERS ARE ALGORITHMICALLY UNRECOGNIZABLE
Popis výsledku v původním jazyce
A good cover in R^d is a collection of open contractible sets in R^d such that the intersection of any subcollection is either contractible or empty. Motivated by an analogy with convex sets, intersection patterns of good covers were studied intensively.Our main result is that intersection patterns of good covers are algorithmically unrecognizable. More precisely, the intersection pattern of a good cover can be stored in a simplicial complex called a nerve which records which subfamilies of the good cover intersect. A simplicial complex is topologically d-representable if it is isomorphic to the nerve of a good cover in R^d. We prove that it is undecidable whether a given simplicial complex is topologically d-representable for any fixed d }= 5. The result remains valid if we replace good covers with acyclic covers or with covers by open d-balls. As an auxiliary result we prove that if a simplicial complex is piecewise-linearly embeddable into R^d, then it is topologically d-representa
Název v anglickém jazyce
NERVES OF GOOD COVERS ARE ALGORITHMICALLY UNRECOGNIZABLE
Popis výsledku anglicky
A good cover in R^d is a collection of open contractible sets in R^d such that the intersection of any subcollection is either contractible or empty. Motivated by an analogy with convex sets, intersection patterns of good covers were studied intensively.Our main result is that intersection patterns of good covers are algorithmically unrecognizable. More precisely, the intersection pattern of a good cover can be stored in a simplicial complex called a nerve which records which subfamilies of the good cover intersect. A simplicial complex is topologically d-representable if it is isomorphic to the nerve of a good cover in R^d. We prove that it is undecidable whether a given simplicial complex is topologically d-representable for any fixed d }= 5. The result remains valid if we replace good covers with acyclic covers or with covers by open d-balls. As an auxiliary result we prove that if a simplicial complex is piecewise-linearly embeddable into R^d, then it is topologically d-representa
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM JOURNAL ON COMPUTING
ISSN
0097-5397
e-ISSN
—
Svazek periodika
42
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
1697-1719
Kód UT WoS článku
000323889100011
EID výsledku v databázi Scopus
—