DEPENDENT FUNCTIONAL LINEAR MODELS WITH APPLICATIONS TO MONITORING STRUCTURAL CHANGE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282975" target="_blank" >RIV/00216208:11320/14:10282975 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5705/ss.2012.233" target="_blank" >http://dx.doi.org/10.5705/ss.2012.233</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5705/ss.2012.233" target="_blank" >10.5705/ss.2012.233</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DEPENDENT FUNCTIONAL LINEAR MODELS WITH APPLICATIONS TO MONITORING STRUCTURAL CHANGE
Popis výsledku v původním jazyce
We study sequential monitoring procedures that detect instabilities of the regression operator in an underlying (fully) functional regression model allowing for dependence. These open-end and closed-end procedures are built on a functional principal components analysis of both the predictor and response functions, thus giving rise to multivariate detector functions, whose fluctuations are compared against a curved threshold function. The main theoretical result of the paper quantifies the large-sample behavior of the procedures under the null hypothesis of a stable regression operator. To establish these limit results, classical results on functional principal components analysis are generalized to a dependent setting, which may be of interest in its own sake. In an accompanying empirical study we illustrate the finite sample properties, while an application to environmental data highlights practical usefulness. To the best of our knowledge this is the first paper that combines sequent
Název v anglickém jazyce
DEPENDENT FUNCTIONAL LINEAR MODELS WITH APPLICATIONS TO MONITORING STRUCTURAL CHANGE
Popis výsledku anglicky
We study sequential monitoring procedures that detect instabilities of the regression operator in an underlying (fully) functional regression model allowing for dependence. These open-end and closed-end procedures are built on a functional principal components analysis of both the predictor and response functions, thus giving rise to multivariate detector functions, whose fluctuations are compared against a curved threshold function. The main theoretical result of the paper quantifies the large-sample behavior of the procedures under the null hypothesis of a stable regression operator. To establish these limit results, classical results on functional principal components analysis are generalized to a dependent setting, which may be of interest in its own sake. In an accompanying empirical study we illustrate the finite sample properties, while an application to environmental data highlights practical usefulness. To the best of our knowledge this is the first paper that combines sequent
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP201%2F12%2F1277" target="_blank" >GAP201/12/1277: Statistické modelování trendu pro závislá data</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Statistica Sinica
ISSN
1017-0405
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
TW - Čínská republika (Tchaj-wan)
Počet stran výsledku
31
Strana od-do
1043-1073
Kód UT WoS článku
000340697800001
EID výsledku v databázi Scopus
—