Linear measure functional differential equations with infinite delay
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283511" target="_blank" >RIV/00216208:11320/14:10283511 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985840:_____/14:00434085
Výsledek na webu
<a href="http://dx.doi.org/10.1002/mana.201300048" target="_blank" >http://dx.doi.org/10.1002/mana.201300048</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201300048" target="_blank" >10.1002/mana.201300048</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linear measure functional differential equations with infinite delay
Popis výsledku v původním jazyce
We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependenceof solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.
Název v anglickém jazyce
Linear measure functional differential equations with infinite delay
Popis výsledku anglicky
We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependenceof solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Svazek periodika
287
Číslo periodika v rámci svazku
11-12
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
20
Strana od-do
1363-1382
Kód UT WoS článku
000340379600011
EID výsledku v databázi Scopus
—