On the gap between the complexity of SAT and minimization for certain classes of boolean formulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285647" target="_blank" >RIV/00216208:11320/14:10285647 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cs.uic.edu/pub/Isaim2014/WebPreferences/ISAIM2014_Boolean_Cepek_Gursky.pdf" target="_blank" >http://www.cs.uic.edu/pub/Isaim2014/WebPreferences/ISAIM2014_Boolean_Cepek_Gursky.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the gap between the complexity of SAT and minimization for certain classes of boolean formulas
Popis výsledku v původním jazyce
It is a wellknown fact that the satisfiability problem (SAT) for Boolean formulas in a conjunctive normal form (CNF) is NP complete, i.e. 1 complete. It is also known that the decision version of Boolean minimization for CNF inputs is 2 complete. On theother hand there are several subclasses of CNFs (e.g. Horn CNFs) for which SAT is known to be in P = 0 while the minimization problem is 1 complete. Thus, for both the general case and the above mentioned subclasses the gap between the complexity of SATand minimization is exactly one level in the polynomial hierarchy. There are also some subclasses (e.g. quadratic CNFs) for which there is no gap because both SAT and minimization are in P = 0. In this short note we shall systematically study different classes of Boolean functions with respect to the size of the mentioned gap and show that there also exist classes for which the gap between the complexity of SAT and minimization is the maximum possible (two levels in the polynomial hierar
Název v anglickém jazyce
On the gap between the complexity of SAT and minimization for certain classes of boolean formulas
Popis výsledku anglicky
It is a wellknown fact that the satisfiability problem (SAT) for Boolean formulas in a conjunctive normal form (CNF) is NP complete, i.e. 1 complete. It is also known that the decision version of Boolean minimization for CNF inputs is 2 complete. On theother hand there are several subclasses of CNFs (e.g. Horn CNFs) for which SAT is known to be in P = 0 while the minimization problem is 1 complete. Thus, for both the general case and the above mentioned subclasses the gap between the complexity of SATand minimization is exactly one level in the polynomial hierarchy. There are also some subclasses (e.g. quadratic CNFs) for which there is no gap because both SAT and minimization are in P = 0. In this short note we shall systematically study different classes of Boolean functions with respect to the size of the mentioned gap and show that there also exist classes for which the gap between the complexity of SAT and minimization is the maximum possible (two levels in the polynomial hierar
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů