Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the gap between the complexity of SAT and minimization for certain classes of boolean formulas

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285647" target="_blank" >RIV/00216208:11320/14:10285647 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.cs.uic.edu/pub/Isaim2014/WebPreferences/ISAIM2014_Boolean_Cepek_Gursky.pdf" target="_blank" >http://www.cs.uic.edu/pub/Isaim2014/WebPreferences/ISAIM2014_Boolean_Cepek_Gursky.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the gap between the complexity of SAT and minimization for certain classes of boolean formulas

  • Popis výsledku v původním jazyce

    It is a wellknown fact that the satisfiability problem (SAT) for Boolean formulas in a conjunctive normal form (CNF) is NP complete, i.e. 1 complete. It is also known that the decision version of Boolean minimization for CNF inputs is 2 complete. On theother hand there are several subclasses of CNFs (e.g. Horn CNFs) for which SAT is known to be in P = 0 while the minimization problem is 1 complete. Thus, for both the general case and the above mentioned subclasses the gap between the complexity of SATand minimization is exactly one level in the polynomial hierarchy. There are also some subclasses (e.g. quadratic CNFs) for which there is no gap because both SAT and minimization are in P = 0. In this short note we shall systematically study different classes of Boolean functions with respect to the size of the mentioned gap and show that there also exist classes for which the gap between the complexity of SAT and minimization is the maximum possible (two levels in the polynomial hierar

  • Název v anglickém jazyce

    On the gap between the complexity of SAT and minimization for certain classes of boolean formulas

  • Popis výsledku anglicky

    It is a wellknown fact that the satisfiability problem (SAT) for Boolean formulas in a conjunctive normal form (CNF) is NP complete, i.e. 1 complete. It is also known that the decision version of Boolean minimization for CNF inputs is 2 complete. On theother hand there are several subclasses of CNFs (e.g. Horn CNFs) for which SAT is known to be in P = 0 while the minimization problem is 1 complete. Thus, for both the general case and the above mentioned subclasses the gap between the complexity of SATand minimization is exactly one level in the polynomial hierarchy. There are also some subclasses (e.g. quadratic CNFs) for which there is no gap because both SAT and minimization are in P = 0. In this short note we shall systematically study different classes of Boolean functions with respect to the size of the mentioned gap and show that there also exist classes for which the gap between the complexity of SAT and minimization is the maximum possible (two levels in the polynomial hierar

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů