Everything You Always Wanted to Know about Blocked Sets (But Were Afraid to Ask)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285802" target="_blank" >RIV/00216208:11320/14:10285802 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-3-319-09284-3_24" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-09284-3_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-09284-3_24" target="_blank" >10.1007/978-3-319-09284-3_24</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Everything You Always Wanted to Know about Blocked Sets (But Were Afraid to Ask)
Popis výsledku v původním jazyce
Blocked clause elimination is a powerful technique in SAT solving. In recent work, it has been shown that it is possible to decompose any propositional formula into two subsets (blocked sets) such that both can be solved by blocked clause elimination. Weextend this work in several ways. First, we prove new theoretical properties of blocked sets. We then present additional and improved ways to efficiently solve blocked sets. Further, we propose novel decomposition algorithms for faster decomposition orwhich produce blocked sets with desirable attributes. We use decompositions to reencode CNF formulas and to obtain circuits, such as AIGs, which can then be simplified by algorithms from circuit synthesis and encoded back to CNF. Our experiments demonstrate that these techniques can increase the performance of the SAT solver Lingeling on hard to solve application benchmarks.
Název v anglickém jazyce
Everything You Always Wanted to Know about Blocked Sets (But Were Afraid to Ask)
Popis výsledku anglicky
Blocked clause elimination is a powerful technique in SAT solving. In recent work, it has been shown that it is possible to decompose any propositional formula into two subsets (blocked sets) such that both can be solved by blocked clause elimination. Weextend this work in several ways. First, we prove new theoretical properties of blocked sets. We then present additional and improved ways to efficiently solve blocked sets. Further, we propose novel decomposition algorithms for faster decomposition orwhich produce blocked sets with desirable attributes. We use decompositions to reencode CNF formulas and to obtain circuits, such as AIGs, which can then be simplified by algorithms from circuit synthesis and encoded back to CNF. Our experiments demonstrate that these techniques can increase the performance of the SAT solver Lingeling on hard to solve application benchmarks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-319-09284-3
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
16
Strana od-do
317-332
Název nakladatele
SPRINGER-VERLAG BERLIN
Místo vydání
BERLIN
Místo konání akce
Vienna, Austria
Datum konání akce
14. 7. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000345595300024