Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On critical values of self-similar sets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10286389" target="_blank" >RIV/00216208:11320/14:10286389 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On critical values of self-similar sets

  • Popis výsledku v původním jazyce

    In this paper we study properties of the set of critical values for self-similar sets. We introduce simple condition that implies at most countably many critical values and we construct a self-similar set with uncountable set of critical values.

  • Název v anglickém jazyce

    On critical values of self-similar sets

  • Popis výsledku anglicky

    In this paper we study properties of the set of critical values for self-similar sets. We introduce simple condition that implies at most countably many critical values and we construct a self-similar set with uncountable set of critical values.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GCP201%2F10%2FJ039" target="_blank" >GCP201/10/J039: Míry křivosti a integrální geometrie</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Houston Journal of Mathematics

  • ISSN

    0362-1588

  • e-ISSN

  • Svazek periodika

    2014

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    81-96

  • Kód UT WoS článku

    000341680100005

  • EID výsledku v databázi Scopus