ERDOS-SZEKERES-TYPE STATEMENTS: RAMSEY FUNCTION AND DECIDABILITY IN DIMENSION 1
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10286480" target="_blank" >RIV/00216208:11320/14:10286480 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1215/00127094-2785915" target="_blank" >http://dx.doi.org/10.1215/00127094-2785915</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1215/00127094-2785915" target="_blank" >10.1215/00127094-2785915</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ERDOS-SZEKERES-TYPE STATEMENTS: RAMSEY FUNCTION AND DECIDABILITY IN DIMENSION 1
Popis výsledku v původním jazyce
A classical and widely used lemma of Erdos and Szekeres asserts that for every n there exists N such that every N-term sequence a of real numbers contains an n-term increasing subsequence or an n-term nonincreasing subsequence; quantitatively, the smallest N with this property equals (n - 1)(2) + 1. We express this lemma by saying that the set of predicates Phi = {x(1) < x(2), x(1) > x(2)} is Erdos-Szekeres with Ramsey function ES Phi (n) = (n - 1)(2) + 1. In general, we consider an arbitrary finite setPhi = {Phi(1), ... , Phi(m)} of semialgebraic predicates, meaning that each Phi(j) = Phi(j) (x(1), ... , x(k)) is a Boolean combination of polynomial equations and inequalities in some number k of real variables. We define Phi to be Erdos-Szekeres if for every n there exists N such that each N-term sequence (a) of real numbers has an n-term subsequence (b) such that at least one of the Phi(j) holds everywhere on (b) which means that Phi(j) (b(i1), ... , b(ik)) holds for every choice of
Název v anglickém jazyce
ERDOS-SZEKERES-TYPE STATEMENTS: RAMSEY FUNCTION AND DECIDABILITY IN DIMENSION 1
Popis výsledku anglicky
A classical and widely used lemma of Erdos and Szekeres asserts that for every n there exists N such that every N-term sequence a of real numbers contains an n-term increasing subsequence or an n-term nonincreasing subsequence; quantitatively, the smallest N with this property equals (n - 1)(2) + 1. We express this lemma by saying that the set of predicates Phi = {x(1) < x(2), x(1) > x(2)} is Erdos-Szekeres with Ramsey function ES Phi (n) = (n - 1)(2) + 1. In general, we consider an arbitrary finite setPhi = {Phi(1), ... , Phi(m)} of semialgebraic predicates, meaning that each Phi(j) = Phi(j) (x(1), ... , x(k)) is a Boolean combination of polynomial equations and inequalities in some number k of real variables. We define Phi to be Erdos-Szekeres if for every n there exists N such that each N-term sequence (a) of real numbers has an n-term subsequence (b) such that at least one of the Phi(j) holds everywhere on (b) which means that Phi(j) (b(i1), ... , b(ik)) holds for every choice of
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Duke Mathematical Journal
ISSN
0012-7094
e-ISSN
—
Svazek periodika
163
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
2243-2270
Kód UT WoS článku
000341467800003
EID výsledku v databázi Scopus
—