Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ERDOS-SZEKERES-TYPE STATEMENTS: RAMSEY FUNCTION AND DECIDABILITY IN DIMENSION 1

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10286480" target="_blank" >RIV/00216208:11320/14:10286480 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1215/00127094-2785915" target="_blank" >http://dx.doi.org/10.1215/00127094-2785915</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1215/00127094-2785915" target="_blank" >10.1215/00127094-2785915</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ERDOS-SZEKERES-TYPE STATEMENTS: RAMSEY FUNCTION AND DECIDABILITY IN DIMENSION 1

  • Popis výsledku v původním jazyce

    A classical and widely used lemma of Erdos and Szekeres asserts that for every n there exists N such that every N-term sequence a of real numbers contains an n-term increasing subsequence or an n-term nonincreasing subsequence; quantitatively, the smallest N with this property equals (n - 1)(2) + 1. We express this lemma by saying that the set of predicates Phi = {x(1) < x(2), x(1) > x(2)} is Erdos-Szekeres with Ramsey function ES Phi (n) = (n - 1)(2) + 1. In general, we consider an arbitrary finite setPhi = {Phi(1), ... , Phi(m)} of semialgebraic predicates, meaning that each Phi(j) = Phi(j) (x(1), ... , x(k)) is a Boolean combination of polynomial equations and inequalities in some number k of real variables. We define Phi to be Erdos-Szekeres if for every n there exists N such that each N-term sequence (a) of real numbers has an n-term subsequence (b) such that at least one of the Phi(j) holds everywhere on (b) which means that Phi(j) (b(i1), ... , b(ik)) holds for every choice of

  • Název v anglickém jazyce

    ERDOS-SZEKERES-TYPE STATEMENTS: RAMSEY FUNCTION AND DECIDABILITY IN DIMENSION 1

  • Popis výsledku anglicky

    A classical and widely used lemma of Erdos and Szekeres asserts that for every n there exists N such that every N-term sequence a of real numbers contains an n-term increasing subsequence or an n-term nonincreasing subsequence; quantitatively, the smallest N with this property equals (n - 1)(2) + 1. We express this lemma by saying that the set of predicates Phi = {x(1) < x(2), x(1) > x(2)} is Erdos-Szekeres with Ramsey function ES Phi (n) = (n - 1)(2) + 1. In general, we consider an arbitrary finite setPhi = {Phi(1), ... , Phi(m)} of semialgebraic predicates, meaning that each Phi(j) = Phi(j) (x(1), ... , x(k)) is a Boolean combination of polynomial equations and inequalities in some number k of real variables. We define Phi to be Erdos-Szekeres if for every n there exists N such that each N-term sequence (a) of real numbers has an n-term subsequence (b) such that at least one of the Phi(j) holds everywhere on (b) which means that Phi(j) (b(i1), ... , b(ik)) holds for every choice of

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Duke Mathematical Journal

  • ISSN

    0012-7094

  • e-ISSN

  • Svazek periodika

    163

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    28

  • Strana od-do

    2243-2270

  • Kód UT WoS článku

    000341467800003

  • EID výsledku v databázi Scopus