Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

LOWER BOUNDS ON GEOMETRIC RAMSEY FUNCTIONS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10286870" target="_blank" >RIV/00216208:11320/14:10286870 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1145/2582112.2582146" target="_blank" >http://dx.doi.org/10.1145/2582112.2582146</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2582112.2582146" target="_blank" >10.1145/2582112.2582146</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    LOWER BOUNDS ON GEOMETRIC RAMSEY FUNCTIONS

  • Popis výsledku v původním jazyce

    We continue a sequence of recent works studying Ramsey functions for semialgebraic predicates in R-d. A k-ary semialgebraic predicate Phi(x(1), ..., x(k)) on R-d is a Boolean combination of polynomial equations and inequalities in the kd coordinates of kpoints x(1), ..., x(k) is an element of R-d. A sequence P = (p(1), ..., p(n)) of points in R-d is called Phi-homogeneous if either Phi(p(i1), ..., p(ik)) holds for all choices 1 {= i(1) < ... < i(k) {= n, or it holds for no such choice. The Ramsey function R-Phi(n) is the smallest N such that every point sequence of length N contains a Phi-homogeneous subsequence of length n. Conlon et al. [Trans. Amer. Math. Soc., 366 (2013), pp. 5043-5065] constructed the first examples of semialgebraic predicates with the Ramsey function bounded from below by a tower function of arbitrary height: for every k }= 4, they exhibit a k-ary Phi in dimension 2(k-4) with R-Phi bounded below by a tower of height k - 1. We reduce the dimension in their constr

  • Název v anglickém jazyce

    LOWER BOUNDS ON GEOMETRIC RAMSEY FUNCTIONS

  • Popis výsledku anglicky

    We continue a sequence of recent works studying Ramsey functions for semialgebraic predicates in R-d. A k-ary semialgebraic predicate Phi(x(1), ..., x(k)) on R-d is a Boolean combination of polynomial equations and inequalities in the kd coordinates of kpoints x(1), ..., x(k) is an element of R-d. A sequence P = (p(1), ..., p(n)) of points in R-d is called Phi-homogeneous if either Phi(p(i1), ..., p(ik)) holds for all choices 1 {= i(1) < ... < i(k) {= n, or it holds for no such choice. The Ramsey function R-Phi(n) is the smallest N such that every point sequence of length N contains a Phi-homogeneous subsequence of length n. Conlon et al. [Trans. Amer. Math. Soc., 366 (2013), pp. 5043-5065] constructed the first examples of semialgebraic predicates with the Ramsey function bounded from below by a tower function of arbitrary height: for every k }= 4, they exhibit a k-ary Phi in dimension 2(k-4) with R-Phi bounded below by a tower of height k - 1. We reduce the dimension in their constr

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the thirtieth annual symposium on Computational geometry

  • ISBN

    978-1-4503-2594-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    558-564

  • Název nakladatele

    ACM

  • Místo vydání

    New York

  • Místo konání akce

    Kyoto

  • Datum konání akce

    8. 6. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku