On the nuclei of Moufang loops with orders coprime to six
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10287261" target="_blank" >RIV/00216208:11320/14:10287261 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jalgebra.2013.10.033" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2013.10.033</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2013.10.033" target="_blank" >10.1016/j.jalgebra.2013.10.033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the nuclei of Moufang loops with orders coprime to six
Popis výsledku v původním jazyce
An open problem, originally proposed by J.D. Phillips, asks if there exists an odd ordered Moufang loop that possesses a trivial nucleus. In 1968 George Glauberman proved [7] that if Q is a Moufang loop of odd order and M is any minimal normal subloop ofQ whose order is coprime to its index in Q, then M is contained in the nucleus of Q. We are able to strengthen Glauberman's result here by removing the coprime assumption between the order of M and its index in Q given that the loop Q has an order not divisible by three (in addition to being of odd order). Thus, a nontrivial Moufang loop having an order coprime to six certainly has a nontrivial nucleus. Concerning then the question raised by J.D. Phillips, any nontrivial Moufang loop of odd order witha trivial nucleus (should one exist) must have an order divisible by three. (C) 2013 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
On the nuclei of Moufang loops with orders coprime to six
Popis výsledku anglicky
An open problem, originally proposed by J.D. Phillips, asks if there exists an odd ordered Moufang loop that possesses a trivial nucleus. In 1968 George Glauberman proved [7] that if Q is a Moufang loop of odd order and M is any minimal normal subloop ofQ whose order is coprime to its index in Q, then M is contained in the nucleus of Q. We are able to strengthen Glauberman's result here by removing the coprime assumption between the order of M and its index in Q given that the loop Q has an order not divisible by three (in addition to being of odd order). Thus, a nontrivial Moufang loop having an order coprime to six certainly has a nontrivial nucleus. Concerning then the question raised by J.D. Phillips, any nontrivial Moufang loop of odd order witha trivial nucleus (should one exist) must have an order divisible by three. (C) 2013 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Svazek periodika
2014
Číslo periodika v rámci svazku
402
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
280-293
Kód UT WoS článku
000331418500011
EID výsledku v databázi Scopus
—