Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

INFINITELY GENERATED PROJECTIVE MODULES OVER PULLBACKS OF RINGS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10288465" target="_blank" >RIV/00216208:11320/14:10288465 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    INFINITELY GENERATED PROJECTIVE MODULES OVER PULLBACKS OF RINGS

  • Popis výsledku v původním jazyce

    We use pullbacks of rings to realize the submonoids M of (N-0 boolean OR {infinity})(k), which are the set of solutions of a finite system of linear diophantine inequalities as the monoid of isomorphism classes of countably generated projective right R-modules over a suitable semilocal ring. For these rings, the behavior of countably generated projective left R-modules is determined by the monoid D(M) defined by reversing the inequalities determining the monoid M. These two monoids are not isomorphic ingeneral. As a consequence of our results we show that there are semilocal rings such that all its projective right modules are free but this fails for projective left modules. This answers in the negative a question posed by Fuller and Shutters. We alsoprovide a rich variety of examples of semilocal rings having nonfinitely generated projective modules that are finitely generated modulo the Jacobson radical.

  • Název v anglickém jazyce

    INFINITELY GENERATED PROJECTIVE MODULES OVER PULLBACKS OF RINGS

  • Popis výsledku anglicky

    We use pullbacks of rings to realize the submonoids M of (N-0 boolean OR {infinity})(k), which are the set of solutions of a finite system of linear diophantine inequalities as the monoid of isomorphism classes of countably generated projective right R-modules over a suitable semilocal ring. For these rings, the behavior of countably generated projective left R-modules is determined by the monoid D(M) defined by reversing the inequalities determining the monoid M. These two monoids are not isomorphic ingeneral. As a consequence of our results we show that there are semilocal rings such that all its projective right modules are free but this fails for projective left modules. This answers in the negative a question posed by Fuller and Shutters. We alsoprovide a rich variety of examples of semilocal rings having nonfinitely generated projective modules that are finitely generated modulo the Jacobson radical.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Transactions of the American Mathematical Society

  • ISSN

    0002-9947

  • e-ISSN

  • Svazek periodika

    366

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    1433-1454

  • Kód UT WoS článku

    000329123600013

  • EID výsledku v databázi Scopus