More on Subfitness and Fitness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10306913" target="_blank" >RIV/00216208:11320/15:10306913 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10485-014-9366-7" target="_blank" >http://dx.doi.org/10.1007/s10485-014-9366-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10485-014-9366-7" target="_blank" >10.1007/s10485-014-9366-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
More on Subfitness and Fitness
Popis výsledku v původním jazyce
The concepts of fitness and subfitness (as defined in Isbell, Trans. Amer. Math. Soc. 327, 353-371, 1991) are useful separation properties in point-free topology. The categorical behaviour of subfitness is bad and fitness is the closest modification thatbehaves well. The separation power of the two, however, differs very substantially and subfitness is transparent and turns out to be useful in its own right. Sort of supplementing the article (Simmons, Appl. Categ. Struct. 14, 1-34, 2006) we present several facts on these concepts and their relation. First the "supportive" role subfitness plays when added to other properties is emphasized. In particular we prove that the numerous Dowker-Strauss type Hausdorff axioms become one for subfit frames. The aspects of fitness as a hereditary subfitness are analyzed, and a simple proof of coreflectivity of fitness is presented. Further, another property, prefitness, is shown to also produce fitness by heredity, in this case in a way usable for
Název v anglickém jazyce
More on Subfitness and Fitness
Popis výsledku anglicky
The concepts of fitness and subfitness (as defined in Isbell, Trans. Amer. Math. Soc. 327, 353-371, 1991) are useful separation properties in point-free topology. The categorical behaviour of subfitness is bad and fitness is the closest modification thatbehaves well. The separation power of the two, however, differs very substantially and subfitness is transparent and turns out to be useful in its own right. Sort of supplementing the article (Simmons, Appl. Categ. Struct. 14, 1-34, 2006) we present several facts on these concepts and their relation. First the "supportive" role subfitness plays when added to other properties is emphasized. In particular we prove that the numerous Dowker-Strauss type Hausdorff axioms become one for subfit frames. The aspects of fitness as a hereditary subfitness are analyzed, and a simple proof of coreflectivity of fitness is presented. Further, another property, prefitness, is shown to also produce fitness by heredity, in this case in a way usable for
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
323-335
Kód UT WoS článku
000355152900005
EID výsledku v databázi Scopus
2-s2.0-84929953388