DEMUTH'S PATH TO RANDOMNESS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312224" target="_blank" >RIV/00216208:11320/15:10312224 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1017/bsl.2015.24" target="_blank" >http://dx.doi.org/10.1017/bsl.2015.24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/bsl.2015.24" target="_blank" >10.1017/bsl.2015.24</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DEMUTH'S PATH TO RANDOMNESS
Popis výsledku v původním jazyce
Osvald Demuth (1936-1988) studied constructive analysis from the viewpoint of the Russian school of constructive mathematics. In the course of his work he introduced various notions of effective null set which, when phrased in classical language, yield anumber of major algorithmic randomness notions. In addition, he proved several results connecting constructive analysis and randomness that were rediscovered only much later. In this paper, we trace the path that took Demuth from his constructivist roots to his deep and innovative work on the interactions between constructive analysis, algorithmic randomness, and computability theory. We will focus specifically on (i) Demuth's work on the differentiability of Markov computable functions and his study of constructive versions of the Denjoy alternative, (ii) Demuth's independent discovery of the main notions of algorithmic randomness, as well as the development of Demuth randomness, and (iii) the interactions of truth-table reducibility,
Název v anglickém jazyce
DEMUTH'S PATH TO RANDOMNESS
Popis výsledku anglicky
Osvald Demuth (1936-1988) studied constructive analysis from the viewpoint of the Russian school of constructive mathematics. In the course of his work he introduced various notions of effective null set which, when phrased in classical language, yield anumber of major algorithmic randomness notions. In addition, he proved several results connecting constructive analysis and randomness that were rediscovered only much later. In this paper, we trace the path that took Demuth from his constructivist roots to his deep and innovative work on the interactions between constructive analysis, algorithmic randomness, and computability theory. We will focus specifically on (i) Demuth's work on the differentiability of Markov computable functions and his study of constructive versions of the Denjoy alternative, (ii) Demuth's independent discovery of the main notions of algorithmic randomness, as well as the development of Demuth randomness, and (iii) the interactions of truth-table reducibility,
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of Symbolic Logic
ISSN
1079-8986
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
270-305
Kód UT WoS článku
000361549700002
EID výsledku v databázi Scopus
—